

RFP 2024-21-109P ADDENDUM #1

DESIGN-BUILD SERVICES – PREFABRICATED BUILDINGS FOR JEFFERSON MIDDLE SCHOOL

The following changes, additions, deletions, clarifications, or corrections shall become part of the Request for Proposals for the above-listed project. This Addendum #1 forms part of the RFP document and modifies the original documents. <u>Addendum #1 MUST</u> <u>be acknowledged in the cover letter.</u> Failure to do so may subject the response to disqualification.

Oceanside Unified School District	Program Management: CCM/MAAS
RFP 2024-21-109P	Program Manager: Penny McGrew
Design-Build Services – Prefabricated	
Buildings for Jefferson Middle School	

Inf	formational Updates
1.	UES Geotechnical Report – See Attached
2.	

Question	Response
1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	
9.	
10.	
11.	
12.	
13.	
14.	
15.	
16.	
17.	

END OF ADDENDUM #1

February 22, 2024

UES Job No. 4830.2300142

Oceanside Unified School District 2111 Mission Avenue, #E Oceanside, California 92058

Attention: Mr. Fred Parker (760) 757-2560 fredparker@maasco.com

Subject:Transfer of Geotechnical Responsibility LetterOUSD Jefferson Middle School823 Acacia Avenue, Oceanside, California 92058

Reference: Geotechnical Investigation Final Proposed Jefferson Middle School Modernization 823 Acacia Avenue, Oceanside, California CTE/UES Job No. 10-15771, Dated January 13, 2021

Mr. Parker:

Construction Testing & Engineering Inc. (CTE) has been acquired by Universal Engineering Sciences (UES). As a result, our future project submittals will be under the new UES letterhead. Project personnel will remain the same and UES will take full responsibility for all previous work submitted under the CTE letterhead and agreements.

This document is subject to the same limitations as the referenced geotechnical report. The opportunity to be of service is appreciated. If you have any questions, please contact our office.

Respectfully, Universal Engineering Sciences (UES)

Dan T. Math, GE #3201 Principal Engineer

DTM/JL:ach

Attachments:

Jay F. Lynch, CEG #1890 Principal Engineering Geologist

Attachment A— Addendum 01 to Geotechnical Investigation, Dated January 30, 2024 Attachment B—Geotechnical investigation, Dated January 13, 2021

ATTACHMENT A

Addendum 01 to Geotechnical Investigation, Dated January 30, 2024

January 30, 2024

UES Job No. 4830.2300142

Oceanside Unified School District 2111 Mission Avenue, #E Oceanside, California 92058

- Attention: Mr. Fred Parker (760) 757-2560 <u>fredparker@maasco.com</u>
- Subject:Addendum 01 to Geotechnical Investigation
OUSD Jefferson Middle School
823 Acacia Avenue, Oceanside CA 92058
- Reference:Geotechnical Investigation Final
Proposed Jefferson Middle School Modernization
823 Acacia Avenue, Oceanside, California
CTE/UES Job No. 10-15771G, Dated January 13, 2021

Mr. Parker:

Universal Engineering Sciences (UES) provides this addendum to the referenced Geotechnical Report performed by UES (formerly CTE) in January 2021. The purpose of this addendum is to present the results based on our recent geotechnical investigation conducted on January 3rd and 4th, 2024 at the subject site. The update investigation was performed in general accordance with the terms of UES proposal 4830.1023.00005, dated October 16, 2023.

1.0 FIELD INVESTIGATION AND LABORATORY TESTING

1.1 Field Investigation

UES conducted a field investigation which included site reconnaissance and the excavation of nine exploratory borings (B-13 through B-21) within the proposed improvement areas. The purpose for the additional borings was to get additional exploration coverage and subsurface information based on the updated proposed improvements. The borings were advanced to a maximum depth of approximately 17.5 feet below ground surface (bgs). Bulk samples were collected from the cuttings, and relatively undisturbed samples were collected by driving Standard Penetration Test (SPT) and Modified California (CAL) samplers. The borings were advanced with a Limited Access Rig (LAR) track-mounted drill rig equipped with eight-inch-diameter, hollow-stem augers.

The soils were logged in the field by a UES Geologist and were visually classified in general accordance with the Unified Soil Classification System. The field descriptions have been modified, where appropriate, to reflect laboratory test results. The boring logs, including descriptions of the soils encountered, are included in Appendix B. The approximate locations of the exploratory soil borings are presented on Figures 2Aa and 2Ab.

1.2 Laboratory Testing

Laboratory tests were conducted on selected soil samples for classification purposes, and to evaluate physical properties and engineering characteristics. Laboratory tests included: Max Density, Expansion Index, Gradation, and Chemical Characteristics. Test descriptions and laboratory results for the selected soils are included in Appendix C. Laboratory results from our recent geotechnical investigation are consistent with the findings presented in our original reference report.

2.0 GEOLOGIC CONDITIONS AND GEOLOGIC HAZARDS

Based on the regional geologic map prepared by Kennedy and Tan (2007), Quaternary Old Paralic Deposits and Tertiary San Onofre Formation are the near surface geologic units that underlie the site (Figure 3). Based on recent explorations, Quaternary Previously Placed Fill was observed over the Old Paralic Deposits with Tertiary San Onofre Breccia encountered at depth at boring locations in the southern portion of the property. Descriptions of the geologic units encountered during the investigation are presented below. Surficial geologic materials are depicted on Figure 2Aa, and 2Ab with generalized geologic cross-sections presented on Figures 2Ac, 2Ad, 2Ae, 2Af, and 2Ag.

2.1 Quaternary Previously Placed Fill

Where observed, the Previously Placed Fill (fill) generally consists of loose to medium dense, dark brown and gray-brown, fine- to medium-grained clayey sand. Recent exploratory excavations encountered fill to a maximum depth of approximately 4.0 feet bgs in the area of boring B-13. Localized areas with deeper fill may be encountered during site grading.

2. 2 Quaternary Old Paralic Deposits

Old Paralic Deposits were observed at all recent boring excavations. Where observed, these materials generally consist of very dense, yellow- to gray-brown and reddish-brown, fine- to medium- grained silty to clayey sand. This geologic unit was observed to be relatively thin in the northern, higher elevations of the site and generally increases in thickness to the south.

2. 3 Tertiary San Onofre Breccia

San Onofre Breccia was observed at depth in borings B-17, B-19, B-20. Where observed, this very dense sandstone breccia unit generally excavates as gray-brown, fine- to medium-grained silty sand with rock fragments. This underlying geologic unit is anticipated at depth through the southwest portion of the site.

2. 4 Geologic Hazards

Based on the recent explorations, the geologic hazards presented in the referenced report are consistent with our findings of this updated geotechnical investigation.

3.0 UPDATE RECOMMENDATIONS

UES concludes that the proposed improvements on the site are feasible from a geotechnical standpoint, provided the preliminary recommendations in the referenced geotechnical report are incorporated into the design and construction of the project.

3.1 Grading Recommendations

Based on the recent explorations for this updated geotechnical investigation, the grading recommendations presented in the referenced report are considered suitable. These recommendations may be adjusted during construction as necessary, based on the encountered conditions during grading.

3.2 Foundation Recommendations

Based on the recent explorations for this updated geotechnical investigation, the foundation recommendations presented in the referenced report are considered suitable. These recommendations may also be adjusted during construction as necessary, based on the encountered conditions.

4.0 SEISMIC DESIGN CRITERIA

The seismic ground motion values listed in the table below were derived in accordance with the ASCE 7-16 Standard that is incorporated into the 2022 California Building Code. This was accomplished by establishing the Site Class based on the soil properties at the site and calculating site coefficients and parameters using the using the SEAOC-OSHPD U.S. Seismic Design Maps application. Seismic ground motion values are based on the approximate site coordinates of 33.2102° latitude and -117.3635°longitude. These values are intended for the design of structures to resist the effects of earthquake ground motions.

TABLE 4.0 SEISMIC GROUND MOTION VALUES (CODE-BASED) 2022 CBC AND ASCE 7-16				
PARAMETER	VALUE	2022 CBC/ASCE 7-16 REFERENCE		
Site Class	С	ASCE 16, Chapter 20		
Mapped Spectral Response Acceleration Parameter, S _s	1.005	Figure 1613.2.1 (1)		
Mapped Spectral Response Acceleration Parameter, S ₁	0.369	Figure 1613.2.1 (2)		
Seismic Coefficient, Fa	1.2	Table 1613.2.3 (1)		
Seismic Coefficient, F_v	1.5	Table 1613.2.3 (2)		
MCE Spectral Response Acceleration Parameter, S _{Ms}	1.206	Section 1613.2.3		
MCE Spectral Response Acceleration Parameter, S _{M1}	0.553	Section 1613.2.3		
Design Spectral Response Acceleration, Parameter S _{DS}	0.804	Section 1613.2.5(1)		
Design Spectral Response Acceleration, Parameter S _{D1}	0.369	Section 1613.2.5 (2)		
Peak Ground Acceleration PGA_{M}	0.526	ASCE 16, Section 11.8.3		

The recommendations herein are based on our review of the currently available design information and the recent geotechnical investigation. The anticipated conditions should be verified in the field during construction. This addendum is subject to the same limitations as the previous project geotechnical documents.

UES appreciates this opportunity to be of service on this project. If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Respectfully, Universal Engineering Sciences (UES)

Dan T. Math, GE #2665 Principal Engineer

ONAL

No. 10119

OF CAL

7. Fyre

Jáy Lynch, CEG #1890 Principal Engineering Geologist

Dylan DeJauregui, PG #10119 Project Geologist

DD/DTM/JFL:ach

FIGURES

Figure 2Aa	Exploration Location Map
Figure 2Ab	Exploration Location Map Proposed Site Layout
Figure 2Ac	Cross Section A-A
Figure 2Ad	Cross Section B-B
Figure 2Ae	Cross Section C-C
Figure 2Af	Cross Section D-D
Figure 2Ag	Cross Section E-E

APPENDICES

Appendix A	Not Used
Appendix B	Boring Logs
Appendix C	Laboratory Test Results
Appendix D	Standard Specifications for Grading

2_2024.dwg S: \Projects\4830 (GE0)\4830.2300142.0000 (OUSD Jefferson Middle School (PW 8))\DWG\Figure

- **Qppf** QUATERNARY PREVIOUSLY PLACED FILL
- Qop QUATERNARY OLD PARALIC DEPOSITS
- TSO TERTIARY SAN ONOFRE BRECCIA
- APPROXIMATE GEOLOGIC CONTACT

CROSS SECTION A-A'	cte job no: 4830.2	300142	
OUSD JEFFERSON MIDDLE SCHOOL	SCALE: $1'' = 100'$		
OCEANSIDE, CALIFORNIA	date: 1/24	FIGURE: 2Ac	

LEGEND

- **Qppf** QUATERNARY PREVIOUSLY PLACED FILL
- **QOP** QUATERNARY OLD PARALIC DEPOSITS
- TSO TERTIARY SAN ONOFRE BRECCIA
- APPROXIMATE GEOLOGIC CONTACT

LEGEND

Qppf QUATERNARY PREVIOUSLY PLACED FILL

Qop QUATERNARY OLD PARALIC DEPOSITS

TSO TERTIARY SAN ONOFRE BRECCIA

APPROXIMATE GEOLOGIC CONTACT

OSS SECTION C-C'	CTE JOB NO: 4830.2300142
D JEFFERSON MIDDLE SCHOOL	1" = 40'
OCEANSIDE, CALIFORNIA	DATE: FIGURE: 2Ae

LEGEND

Qppf QUATERNARY PREVIOUSLY PLACED FILL

- TSO TERTIARY SAN ONOFRE BRECCIA
- APPROXIMATE GEOLOGIC CONTACT

OSS SECTION D-D'	CTE JOB NO: 4830.2300142		
D JEFFERSON MIDDLE SCHOOL	1'' = 30'		
OCEANSIDE, CALIFORNIA	DATE: 1/24 FIGURE: 2Af		

APPENDIX A

NOT USED

APPENDIX B

BORING LOGS

Universal Engineering Sciences (UES) 1441 Montiel Road, Suite 115 Escondido, CA 92026 p. 760.746.4955 | TeamUES.com

		D	EFINITION	OF TER	MS			
PR	IMARY DIVISIONS		SYMBOLS		SEC	CONDARY DI	VISIONS	
	GRAVELS	CLEAN	ADY GW 100		WELL GRADED	GRAVELS, GRA	VEL-SAND MIXTU FINES	RES
S. AN	MORE THAN HALF OF	<pre>GRAVELS < 5% FINES</pre>	GP -	POORLY GRADED GRAVELS OR GRAVEL SAND MIXTURES, LITTLE OF NO FINES		TURES,		
SOII F OF R TH ZE	COARSE FRACTION IS	GRAVELS	GM	SILTY GRAVELS, GRAVEL-SAND-SILT MIXTURES, NON-PLASTIC FINES		S,		
INED HAL ARGE VE S	LARGER THAN NO. 4 SIEVE	WITH FINES	GC .	GC		RES,		
GRA THAN L IS L 00 SIE	SANDS	CLEAN	SW	WELL GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO		OR NO		
ARSE ORE ERIAI NO. 2	MORE THAN HALF OF	SANDS < 5% FINES	SP	P	POORLY GRADED SANDS, GRAVELLY SANDS, LITTLE OR		E OR	
COA MATI	COARSE FRACTION IS	SANDS	SM	SI	LTY SANDS, SAN	ND-SILT MIXTUR	RES, NON-PLASTIC	FINES
	SMALLER THAN NO. 4 SIEVE	WITH FINES	SC	(CLAYEY SANDS,	SAND-CLAY MIX	TURES, PLASTIC	FINES
× ۲			ML	IN	ORGANIC SILTS	, VERY FINE SAN	NDS, ROCK FLOUR	, SILTY Y SILTS
OILS JF OF ALLE TE SIZ	SILTS AND C LIQUID LIM	LAYS IT IS	CL	0.	INORGANIC CLA	AYS OF LOW TO	MEDIUM PLASTI	CITY,
VED S N HAI S SM S SEV	LESS THAN	1 50	OL	OF	RGANIC SILTS AI	ND ORGANIC CL	AYS OF LOW PLA	STICITY
THAI THAI THAL I ULAL I O. 200			MH	IN	ORGANIC SILTS, SANDY	MICACEOUS O	R DIATOMACEOU ELASTIC SILTS	IS FINE
INE (AORE LATEF AN N	LIQUID LIM	LAYS IT IS AN 50	CH		INORGANIC CL	AYS OF HIGH PL	ASTICITY, FAT CL	AYS
F A A HI	UKEATEK IN	AIN 30	OH //		ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTY CLAYS		ITY,	
HIGH	LY ORGANIC SOILS		PT	PEAT AND OTHER HIGHLY ORGANIC SOILS				
			GRAIN	SIZES				
	CODDUEC	GF	RAVEL		SAND			
BOULDERS	COBBLES	COARSE	FINE	COARSE	MEDIUM	FINE	SILTS AN	DCLAYS
12"	' 3" CLEAR SOLIARE SIEW	3/4"	4	10		200		
	CLEAR SQUARE SILV	LOPENING		0.3. 3TAND	AND SIEVE S	IZL		
ADDITIONAL TESTS (OTHER THAN TEST PIT AND BORING LOG COLUMN HEADINGS)								
MAX- Maximum Dry Density		PM- Permeability			PP- Pocket Penetrometer			
GS- Grain Size Distribution		SG- Specific Gravity			WA- Wash Analysis			
SE- Sand Equivalent		HA- Hydromete	r Analysis		DS- Direct Shear			
EI- Expansion Inde	I- Expansion Index AL- Atterberg Limits UC- Unconfined Compression		sion					
Chivi- Suifate and	Chioride		KV-K-Value			MD- Moisture/Density		
Content , pH, I	Resistivity			UN		M- Moisture		
COK - Corrosivity	had		LC Undrocoller	lential		SL- Swell Compression		
Janpie Disturi	JEU		REM- Remolded			OI- Organic	impurities	
							FIGURE:	BL1

1441 Montiel Road, Suite 115 Escondido, CA 92026 p. 760.746.4955 | TeamUES.com

PROJECT:	DRILLER: S	HEET: Of
LOGGED BY:	SAMPLE METHOD: E	LEVATION:
Depth (Feet) Bulk Sample Driven Type Blows/Foot Dry Density (pcf) Moisture (%) U.S.C.S. Symbol Graphic Log	BORING LEGEND	Laboratory Tests
	DESCRIPTION	
	— Block or Chunk Sample	
	— Bulk Sample	
	 Standard Penetration Test 	
	 Modified Split-Barrel Drive Sampler (Cal Sampler) 	
	 Thin Walled Army Corp. of Engineers Sample 	
	— Groundwater Table	
-20-	Soil Type or Classification Change	2 —
	Formation Change [(Approximate boundaries queried	(?)]
	Quotes are placed around classifications where the soils exist in situ as bedrock	
		FIGURE: BL2

			p. 760.746.49	55 TeamUES.com
PROJECT:	OUSD Jefferson	Middle Scho	DRILLER: BAJA EXPLORATION SHEET:	1 of 1
UES JOB NO:	4830.2300142		DRILL METHOD: LAR: 6" Auger DRILLIN	G DATE: 1/3/2024
LOGGED BY:	DD		SAMPLE METHOD: RING, SPT and BULK ELEVAT	ON: 190ft msl
Depth (Feet) Bulk Sample Driven Type Blows/6"	Dry Density (pcf) Moisture (%)	U.S.C.S. Symbol Graphic Log	BORING: B-13	Laboratory Tests
			DESCRIPTION	
$ \begin{array}{c} 0 \\ - \\ - \\ - \\ $, ,	SM	Topsoil = 0" - 3" PREVIOUSLY PLACED FILL (Qppf): Loose to medium dense, moist, dark-brown, fine-grained clayey SAND with gravels and roots. QUATERNARY OLD PARALIC DEPOSITS (Qop): Very dense, slightly moist, yellow-gray-brown, fine-grained sitly SAND.	EI GS
			Total Depth: 11.0' No Groundwater Encountered Backfilled 1/3/23	
	<u> </u>			B-13

OUSD Informativation Distribution Distribution Distribution Distribution Status I d </th <th colspan="8">p. 760.746.4955 TeamL</th> <th>mUES.com</th>	p. 760.746.4955 TeamL								mUES.com	
UPUS UDE NO. 4880 200142 DBILL METHOD: LAR 6* Auger DBILLNO. DATE: 13/2002 UOGED 0* D SAMPLE METHOD: RING; SPT and BULK FLUNC DATE: 1911 mml USGED 0* D SAMPLE METHOD: RING; SPT and BULK FLUNC DATE: 1911 mml USGED 0* D USGED 0* D D D D Laboratory Tests USGED 0* D S D <t< td=""><td>PROJE</td><td>CT:</td><td></td><td>OUSD Je</td><td>efferson</td><td>Middle</td><td>School</td><td>DRILLER: BAJA EXPLORATION SHEET</td><td>: :</td><td>1 of 1</td></t<>	PROJE	CT:		OUSD Je	efferson	Middle	School	DRILLER: BAJA EXPLORATION SHEET	: :	1 of 1
LOGGED BY: D0 SAMPLE METHOD: INIG. SPT and BULK ELEVATION: 1911 mal 1<	UES J	OBN	10:	4830.23	800142			DRILL METHOD: LAR: 6" Auger DRILL	NG DATE:	1/3/2024
Image: Properties Image: Properties Image: Properies <	LOGG	ED I	BY:	DD				SAMPLE METHOD: RING, SPT and BULK ELEVA	TION:	191ft msl
Description 0 Formation 1 Formation 1 Formation 5 Formation 6 Formation 6 Formation 7 Formation 7 Formation <td>Depth (Feet)</td> <td>Bulk Sample</td> <td>Driven Type Blows/6"</td> <td>Dry Density (pcf)</td> <td>Moisture (%)</td> <td>U.S.C.S. Symbol</td> <td>Graphic Log</td> <td>BORING: B-14</td> <td>Labc</td> <td>oratory Tests</td>	Depth (Feet)	Bulk Sample	Driven Type Blows/6"	Dry Density (pcf)	Moisture (%)	U.S.C.S. Symbol	Graphic Log	BORING: B-14	Labc	oratory Tests
0 - Topsoil = 0" - 4" PREVIOUSY PLACED FILL (Dppf):								DESCRIPTION		
10 10 23 GS 10 10 50/5" GS 10 10 10 No Groundwater Encountered Backfilled 1/3/23 GS 13 10 10 10 10 10 10 13 10 10 10 10 10 10 10 14 10 10 10 10 10 10 10 10 13 10	-0 - 5 		50/6			SC SM		Topsoil = 0" - 4" <u>PREVIOUSLY PLACED FILL (Qppf):</u> Loose to medium dense, moist, dark-brown, fine- to medium-graine clayey SAND. <u>QUATERNARY OLD PARALIC DEPOSITS (Qop):</u> Very dense, slightly moist, yellow-gray-brown, fine- to medium- grained sitly SAND. Very dense, dry, reddish-brown, fine-grained silty SAND.		
10 30/3 Image: Constraint of the second	 -10-		23							GS
B-14								Total Depth: 11.0' No Groundwater Encountered Backfilled 1/3/23		
										B-14

p. 760.746.4955 TeamUES.							
PROJECT:	OUSD Jefferson	Middle School	DRILLER: BAJA EXPLORATION SHEET:	1 of 1			
UES JOB NO:	4830.2300142		DRILL METHOD: LAR: 6" Auger DRILLIN	G DATE: 1/3/2024			
LOGGED BY:	DD		SAMPLE METHOD: RING, SPT and BULK ELEVATION	ON: 191ft msl			
Depth (Feet) Bulk Sample Driven Type Blows/6"	Dry Density (pcf) Moisture (%)	U.S.C.S. Symbol Graphic Log	BORING: B-15	Laboratory Tests			
			DESCRIPTION				
		SC SC	Topsoil = 0" - 4" <u>PREVIOUSLY PLACED FILL (Qppf):</u> Loose to medium dense, moist, dark-brown, fine- to medium-grained clayey SAND. <u>QUATERNARY OLD PARALIC DEPOSITS (Qop):</u> Very dense, slightly moist, gray-brown, fine- to medium-grained	СНМ			
-5 - 18 2 50/6			clayey SAND.	MD, DS			
-10 $Z_{50/2'}^{28}$	n	SM	Very dense, dry, reddish-brown, fine- to coarse-grained silty SAND.				
			Total Depth: 12.5' No Groundwater Encountered Backfilled 1/3/23				
_27				D 45			
				B-15			

p. 760.746.4955 TeamUE							
PROJECT:	OUSD Jefferson Middle Sch	ol DRILLER:	BAJA EXPLORATION	SHEET:	1	of 1	
UES JOB NO:	4830.2300142	DRILL METHOD:	LAR: 6" Auger	DRILLING	DATE:	1/3/2024	
LOGGED BY:	DD	SAMPLE METHOD:	RING, SPT and BULK	ELEVATIC	N:	189ft msl	
Depth (Feet) Bulk Sample Driven Type Blows/6"	Dry Density (pcf) Moisture (%) U.S.C.S. Symbol	BOR	ING: B-16		Labora	atory Tests	
		DI	ESCRIPTION				
-0 -0 -0 -10 -10 -10 -10 -10 -10 -10 -22 50/6"	SC SM	Topsoil = 0" - 5" PREVIOUSLY PLACED FILL (Qp Loose to medium dense, moist clayey SAND. QUATERNARY OLD PARALIC D Very dense, slightly moist, yell grained silty SAND with high g	<u>of):</u> t, dark-brown, fine- to mediu <u>EPOSITS (Qop):</u> ow-gray-brown, fine- to med ravel content.	m-grained			
15- 15- 		Total Depth: 11.0' No Groundwater Encountered Backfilled 1/3/23					
						B-16	

OUSD Herearn Middle School DBALLER: DAIL DPIORATION SHIFT: 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 1 1 1 0 1 1 0 1 1 0 1 <th1< th=""> 1 <th1< th=""></th1<></th1<>	p. 760.746.4955 TeamUES									
UPSIDE NO. 4880 200142 DBILL METHOD: LAR (* Auger DBILLING DATE: 13/2004 UGGED 9: DD SAMPLE METHOD: NRNG, SPT and BUUK ELEVATION: 1891 mml 1991 milling 1990 milling 1990 milling 1991 milling DESCRIPTION Laboratory Tests 0 1990 milling 1990 milling 1990 milling 100 milling DESCRIPTION Laboratory Tests 0 1990 milling 1990 milling 100 milling 100 milling 100 milling DESCRIPTION Laboratory Tests 0 1990 milling 100 milling </td <td>PROJECT:</td> <td>OUSD Jefferson</td> <td>Middle School</td> <td>DRILLER: BAJA EXPLORATION SHEET:</td> <td>1 of 1</td>	PROJECT:	OUSD Jefferson	Middle School	DRILLER: BAJA EXPLORATION SHEET:	1 of 1					
DODECTO IV: DD DAMPLE METHOD: REG. SPT and BLUK ELEVATION: Laboratory: 188/html 1	UES JOB NO:	4830.2300142		DRILL METHOD: LAR: 6" Auger DRILLIN	G DATE: 1/3/2024					
und vise	LOGGED BY:	DD		SAMPLE METHOD: RING, SPT and BULK ELEVATI	ON: 189ft msl					
DESCRIPTION Descrip	Depth (Feet) Bulk Sample Driven Type Blows/6"	Dry Density (pcf) Moisture (%)	U.S.C.S. Symbol Graphic Log	BORING: B-17	Laboratory Tests					
0 Image: Constraint of the second				DESCRIPTION						
SM QUATERNARY OLD PARALIC DEPOSITS (Qop): Very dense, dry, yellow-gray-brown, fine- to medium-grained silty SAND. CN 10 I 15 50/5* ************************************	-0		SM	Topsoil = 0" - 6" with high roots and gravel content. <u>PREVIOUSLY PLACED FILL (Qppf):</u> Medium dense to dense, dry, yellow- gray-brown, fine- to medium- grained silty SAND.						
-10 I 15 50/5" I<	 -5- Z 50/6 	5"	SM	QUATERNARY OLD PARALIC DEPOSITS (Qop): Very dense, dry, yellow-gray-brown, fine- to medium-grained silty SAND.	CN					
-20 -20 -20 -20 -20 -20 -20 -25 -20 -25 -20 -25 -25 -25 -25 -25 -25 -25 -25	$-10^{-10^{-10^{-10^{-10^{-10^{-10^{-10^{$	ри 1	"SM"	<u>TERTIARY SAN ONOFRE BRECCIA (Tso):</u> Very dense sandstone. Excavates as dry, yellow-gray-brown, fine- to medium-grained silty SAND with rock fragments.						
B-17	20- - 25-			Total Depth: 17.5' (Refusal on bedrock) No Groundwater Encountered Backfilled 1/3/23						
					B-17					

p. 760.746.4955 TeamUES.									amUES.com	
PROJE	CT:			OUSD Je	fferson	Middle	School	DRILLER: BAJA EXPLORATION SHEET	:	1 of 1
UES JO	DB N	NO:		4830.23	00142			DRILL METHOD: LAR: 6" Auger DRILLI	NG DATE:	1/3/2024
LOGG	ED I	BY:		DD				SAMPLE METHOD: RING, SPT and BULK ELEVA	TION:	189ft msl
Depth (Feet)	Bulk Sample	Driven Type	Blows/6"	Dry Density (pcf)	Moisture (%)	U.S.C.S. Symbol	Graphic Log	BORING: B-18	Lab	oratory Tests
		_						DESCRIPTION		
-0- 	V		SC Topsoil = 0" - 6" PREVIOUSLY PLACED FILL (Qppf): Loose to medium dense, moist, dark-brown, fine- to medium-graine clayey SAND.						1	MAX
 -5 -	$\left(\right)$		10	134.8	10.5	SM		QUATERNARY OLD PARALIC DEPOSITS (Qop): Very dense, dry, gray-brown, fine- to medium-grained silty SAND.		
		Ζ	18 50/6"							
						SM		Very dense, dry, reddish-brown, fine- to coarse-grained silty SAND with trace gravels.	-	
-10- 		Ζ	28 50/2"							MD, DS
15- 1 -								Total Depth: 12.0' (Drilling Refusal on Bedrock) No Groundwater Encountered Backfilled 1/3/23		
25									1	D 10
L										B-19

p. 760.746.4955 TeamUES.co									mUES.com		
PROJE	CT:		OUSD Je	fferson	Middle S	School	DRILLER: BAJA	A EXPLORATION	SHEET:	, -	1 of 1
UES JO	ОВ М	NO:	4830.23	00142			DRILL METHOD: LAR:	: 6" Auger	DRILLING	G DATE:	1/4/2024
LOGG	ED I	BY:	DD				SAMPLE METHOD: RING	G, SPT and BULK	ELEVATI	ON:	184ft msl
Depth (Feet)	Bulk Sample	Driven Type Blows/6"	Dry Density (pcf)	Moisture (%)	U.S.C.S. Symbol	Graphic Log	BORING: B-19			Labc	pratory Tests
	_						DESCRIPTI	ON			
-0 					SC		Asphalt = 0" - 3" Base = 3" - 6" <u>PREVIOUSLY PLACED FILL (Qppf):</u> Loose to medium dense, dry, yellow-gr grained clayey SAND.	ray-brown, fine- to	o medium-		
					SM		QUATERNARY OLD PARALIC DEPOSITS	6 (Qop):			
-5- 		34 50/5'					Very dense, dry, gray-brown, fine- to n	nedium-grained si	lty SAND.		
					SC			•			
10- 	C	∕ 50/4'					Very dense sandstone. Excavates as dr grained clayey SAND.	<u>•</u> y, gray-brown, fin	e- to coarse-		EI
							Very dense sandstone. Excavates as dr grained sitly SAND with rock fragments	y, gray-brown, fin s.	e- to coarse-		
-15-	ł	T 50/5'									
							Total Depth: 15.5'				
							No Groundwater Encountered Backfilled 1/4/23				
-20-											
-25											
20				l						I	R-19
											6 15

p. 760.746.4955 Tean							amUES.com					
PROJ	CT:			OUSD Je	fferson	Middle S	School	DRILLER:	BAJA EXPLORATION	SHEET:		1 of 1
UES J	ОВ Г	NO:		4830.23	00142			DRILL METHOD:	LAR: 6" Auger	DRILLING	G DATE:	1/4/2024
LOGG	ED I	BY:		DD				SAMPLE METHOD:	RING, SPT and BULK	ELEVATIO	ON:	181ft msl
Depth (Feet)	Bulk Sample	Driven Type	Blows/6"	Dry Density (pcf)	Moisture (%)	U.S.C.S. Symbol	Graphic Log	BORI	ING: B-20		Lab	oratory Tests
_0												
-0 		Т [;]	50/4"			SM SM		Asphalt = 0" - 2" Base = 2" - 5" PREVIOUSLY PLACED FILL (Qpp Dense, dry, gray-brown, fine- to QUATERNARY OLD PARALIC DI Very dense, dry, gray-brown, fi TERTIARY SAN ONOFRE BRECC Very dense sandstone. Excavat grained silty SAND with rock fra	off): o medium-grained silty S EPOSITS (Qop): ne- to medium-grained s IA (Tso): es as dry, gray-brown, fin agements.	AND. silty SAND. ne- to coarse-		
 - 15- 20- 			40 50/3"					Total Depth: 11.0' (Refusal on k No Groundwater Encountered Backfilled 1/4/23	pedrock)			
-2 5 -												В-20

1441 Montiel Road, Suite 115 Escondido, CA 92026

p. 760.746.4955 | TeamUES.com

PROJECT: UES IOB NO:	OUSD Jefferso 4830,230014	on Middle School	DRILLER: BAJA EXPLORATION SHEET:	1 of 1
LOGGED BY:	DD	-	SAMPLE METHOD: BULK ELEVATI	ON: 189ft msl
Depth (Feet) Bulk Sample Driven Type Blows/10cm	Dry Density (pcf) Moisture (%)	U.S.C.S. Symbol Graphic Log	BORING: B-21 DESCRIPTION	Laboratory Tests
-0 DCP-1 2 6 9 - 51-		SC SM	Topsoil: 0" - 3"' <u>Previously Placed Fill (Qppf):</u> Loose to Medium dense, slightly moist, dark-brown, fine- to medium- grained clayey SAND with trace gravels. <u>QUATERNARY OLD PARALIC DEPOSITS (Qop):</u> Very dense, reddish-gray-brown, fine- to coarse-grained sitly SAND.	GS
			Total Depth: 3.0' No Groundwater Encountered Backfilled 1/4/23	
				B-21

APPENDIX C

LABORATORY TEST RESULTS

LABORATORY TEST METHODS

Classification (ASTM D2487)

Earth materials encountered were visually and texturally classified in accordance with the Unified Soil Classification System (USCS/ASTM D2487) and ASTM D2488. Material classifications are indicated on the logs of the exploratory borings presented in Appendix B.

Particle-size Distribution Tests (ASTM D6913)

Particle-size distribution (gradation) testing was performed on selected samples of the materials encountered in general accordance with the latest version of the ASTM D6913 test method. The test results were utilized in evaluating the soil classifications in accordance with the Unified Soil Classification System and to evaluate the geotechnical engineering characteristics of the tested material. The test results are plotted on grain-size distribution graphs and are presented in the following section of this appendix.

Expansion Index Test (ASTM D4829)

Expansion index testing was performed on selected samples of the earth materials encountered in general accordance with the ASTM D4829 test method. The test determines the expansion potential of the materials encountered. The test results are presented in the following section of this appendix.

Laboratory Compaction Characteristics Test (ASTM D1557)

Laboratory compaction characteristics testing was performed on selected samples of the earth materials encountered in general accordance with the ASTM D1557 test method. The test establishes the laboratory maximum dry density and optimum moisture content of the tested materials and are also used to aid in evaluating the strength characteristics of the materials.

Soil Corrosivity Tests

The water-soluble sulfate and chloride content, the resistivity, and pH of selected samples were performed by a third-party laboratory in general accordance with California Test Methods. The tests results are useful in the assessment of the degree of corrosivity of the earth materials encountered with regard to concrete and normal grade steel.

EXPANSION INDEX (ASTM D4829)

Sample Location / Depth (feet)	Expansion Index	Expansion Potential
B-13 @ 0 – 5	17	VERY LOW
B-19 @ 10	0	VERY LOW

LABORATORY COMPACTION CHARACTERISTICS (ASTM D1557)

Sample Location	Maximum Dry Density	Optimum Moisture		
		(percent)		
B-18 @ 0 – 5	134.8 (136.1)	10.3 (9.8)		

CORROSIVITY (CTM 417, CTM 422 and CTM 643)

Sample Location / Depth (feet)	Material Type (USCS)	рН	Minimum Resistivity (Ohm-cm)	Water Soluble Sulfates (ppm)	Water Soluble Chlorides (ppm)
B-15 @ 0 – 5	Clayey Sand (SC)	8.32	9090	111.9	21.2

APPENDIX D

STANDARD SPECIFICATIONS FOR GRADING

Section 1 - General

Construction Testing & Engineering, Inc. presents the following standard recommendations for grading and other associated operations on construction projects. These guidelines should be considered a portion of the project specifications. Recommendations contained in the body of the previously presented soils report shall supersede the recommendations and or requirements as specified herein. The project geotechnical consultant shall interpret disputes arising out of interpretation of the recommendations contained in the soils report or specifications contained herein.

Section 2 - Responsibilities of Project Personnel

The <u>geotechnical consultant</u> should provide observation and testing services sufficient to general conformance with project specifications and standard grading practices. The geotechnical consultant should report any deviations to the client or his authorized representative.

The <u>Client</u> should be chiefly responsible for all aspects of the project. He or his authorized representative has the responsibility of reviewing the findings and recommendations of the geotechnical consultant. He shall authorize or cause to have authorized the Contractor and/or other consultants to perform work and/or provide services. During grading the Client or his authorized representative should remain on-site or should remain reasonably accessible to all concerned parties in order to make decisions necessary to maintain the flow of the project.

The Contractor is responsible for the safety of the project and satisfactory completion of all grading and other associated operations on construction projects, including, but not limited to, earth work in accordance with the project plans, specifications and controlling agency requirements.

Section 3 - Preconstruction Meeting

A preconstruction site meeting should be arranged by the owner and/or client and should include the grading contractor, design engineer, geotechnical consultant, owner's representative and representatives of the appropriate governing authorities.

Section 4 - Site Preparation

The client or contractor should obtain the required approvals from the controlling authorities for the project prior, during and/or after demolition, site preparation and removals, etc. The appropriate approvals should be obtained prior to proceeding with grading operations.

Clearing and grubbing should consist of the removal of vegetation such as brush, grass, woods, stumps, trees, root of trees and otherwise deleterious natural materials from the areas to be graded. Clearing and grubbing should extend to the outside of all proposed excavation and fill areas.

Demolition should include removal of buildings, structures, foundations, reservoirs, utilities (including underground pipelines, septic tanks, leach fields, seepage pits, cisterns, mining shafts, tunnels, etc.) and other man-made surface and subsurface improvements from the areas to be graded. Demolition of utilities should include proper capping and/or rerouting pipelines at the project perimeter and cutoff and capping of wells in accordance with the requirements of the governing authorities and the recommendations of the geotechnical consultant at the time of demolition.

Trees, plants or man-made improvements not planned to be removed or demolished should be protected by the contractor from damage or injury.

Debris generated during clearing, grubbing and/or demolition operations should be wasted from areas to be graded and disposed off-site. Clearing, grubbing and demolition operations should be performed under the observation of the geotechnical consultant.

Section 5 - Site Protection

Protection of the site during the period of grading should be the responsibility of the contractor. Unless other provisions are made in writing and agreed upon among the concerned parties, completion of a portion of the project should not be considered to preclude that portion or adjacent areas from the requirements for site protection until such time as the entire project is complete as identified by the geotechnical consultant, the client and the regulating agencies.

Precautions should be taken during the performance of site clearing, excavations and grading to protect the work site from flooding, ponding or inundation by poor or improper surface drainage. Temporary provisions should be made during the rainy season to adequately direct surface drainage away from and off the work site. Where low areas cannot be avoided, pumps should be kept on hand to continually remove water during periods of rainfall.

Rain related damage should be considered to include, but may not be limited to, erosion, silting, saturation, swelling, structural distress and other adverse conditions as determined by the geotechnical consultant. Soil adversely affected should be classified as unsuitable materials and should be subject to overexcavation and replacement with compacted fill or other remedial grading as recommended by the geotechnical consultant.

STANDARD SPECIFICATIONS OF GRADING Page 2 of 26

The contractor should be responsible for the stability of all temporary excavations. Recommendations by the geotechnical consultant pertaining to temporary excavations (e.g., backcuts) are made in consideration of stability of the completed project and, therefore, should not be considered to preclude the responsibilities of the contractor. Recommendations by the geotechnical consultant should not be considered to preclude requirements that are more restrictive by the regulating agencies. The contractor should provide during periods of extensive rainfall plastic sheeting to prevent unprotected slopes from becoming saturated and unstable. When deemed appropriate by the geotechnical consultant or governing agencies the contractor shall install checkdams, desilting basins, sand bags or other drainage control measures.

In relatively level areas and/or slope areas, where saturated soil and/or erosion gullies exist to depths of greater than 1.0 foot; they should be overexcavated and replaced as compacted fill in accordance with the applicable specifications. Where affected materials exist to depths of 1.0 foot or less below proposed finished grade, remedial grading by moisture conditioning in-place, followed by thorough recompaction in accordance with the applicable grading guidelines herein may be attempted. If the desired results are not achieved, all affected materials should be overexcavated and replaced as compacted fill in accordance with the slope repair recommendations herein. If field conditions dictate, the geotechnical consultant may recommend other slope repair procedures.

Section 6 - Excavations

6.1 Unsuitable Materials

Materials that are unsuitable should be excavated under observation and recommendations of the geotechnical consultant. Unsuitable materials include, but may not be limited to, dry, loose, soft, wet, organic compressible natural soils and fractured, weathered, soft bedrock and nonengineered or otherwise deleterious fill materials.

Material identified by the geotechnical consultant as unsatisfactory due to its moisture conditions should be overexcavated; moisture conditioned as needed, to a uniform at or above optimum moisture condition before placement as compacted fill.

If during the course of grading adverse geotechnical conditions are exposed which were not anticipated in the preliminary soil report as determined by the geotechnical consultant additional exploration, analysis, and treatment of these problems may be recommended.
6.2 Cut Slopes

Unless otherwise recommended by the geotechnical consultant and approved by the regulating agencies, permanent cut slopes should not be steeper than 2:1 (horizontal: vertical).

The geotechnical consultant should observe cut slope excavation and if these excavations expose loose cohesionless, significantly fractured or otherwise unsuitable material, the materials should be overexcavated and replaced with a compacted stabilization fill. If encountered specific cross section details should be obtained from the Geotechnical Consultant.

When extensive cut slopes are excavated or these cut slopes are made in the direction of the prevailing drainage, a non-erodible diversion swale (brow ditch) should be provided at the top of the slope.

6.3 Pad Areas

All lot pad areas, including side yard terrace containing both cut and fill materials, transitions, located less than 3 feet deep should be overexcavated to a depth of 3 feet and replaced with a uniform compacted fill blanket of 3 feet. Actual depth of overexcavation may vary and should be delineated by the geotechnical consultant during grading, especially where deep or drastic transitions are present.

For pad areas created above cut or natural slopes, positive drainage should be established away from the top-of-slope. This may be accomplished utilizing a berm drainage swale and/or an appropriate pad gradient. A gradient in soil areas away from the top-of-slopes of 2 percent or greater is recommended.

Section 7 - Compacted Fill

All fill materials should have fill quality, placement, conditioning and compaction as specified below or as approved by the geotechnical consultant.

7.1 Fill Material Quality

Excavated on-site or import materials which are acceptable to the geotechnical consultant may be utilized as compacted fill, provided trash, vegetation and other deleterious materials are removed prior to placement. All import materials anticipated for use on-site should be sampled tested and approved prior to and placement is in conformance with the requirements outlined.

> STANDARD SPECIFICATIONS OF GRADING Page 4 of 26

Rocks 12 inches in maximum and smaller may be utilized within compacted fill provided sufficient fill material is placed and thoroughly compacted over and around all rock to effectively fill rock voids. The amount of rock should not exceed 40 percent by dry weight passing the 3/4-inch sieve. The geotechnical consultant may vary those requirements as field conditions dictate.

Where rocks greater than 12 inches but less than four feet of maximum dimension are generated during grading, or otherwise desired to be placed within an engineered fill, special handling in accordance with the recommendations below. Rocks greater than four feet should be broken down or disposed off-site.

7.2 Placement of Fill

Prior to placement of fill material, the geotechnical consultant should observe and approve the area to receive fill. After observation and approval, the exposed ground surface should be scarified to a depth of 6 to 8 inches. The scarified material should be conditioned (i.e. moisture added or air dried by continued discing) to achieve a moisture content at or slightly above optimum moisture conditions and compacted to a minimum of 90 percent of the maximum density or as otherwise recommended in the soils report or by appropriate government agencies.

Compacted fill should then be placed in thin horizontal lifts not exceeding eight inches in loose thickness prior to compaction. Each lift should be moisture conditioned as needed, thoroughly blended to achieve a consistent moisture content at or slightly above optimum and thoroughly compacted by mechanical methods to a minimum of 90 percent of laboratory maximum dry density. Each lift should be treated in a like manner until the desired finished grades are achieved.

The contractor should have suitable and sufficient mechanical compaction equipment and watering apparatus on the job site to handle the amount of fill being placed in consideration of moisture retention properties of the materials and weather conditions.

When placing fill in horizontal lifts adjacent to areas sloping steeper than 5:1 (horizontal: vertical), horizontal keys and vertical benches should be excavated into the adjacent slope area. Keying and benching should be sufficient to provide at least six-foot wide benches and a minimum of four feet of vertical bench height within the firm natural ground, firm bedrock or engineered compacted fill. No compacted fill should be placed in an area after keying and benching until the geotechnical consultant has reviewed the area. Material generated by the benching operation should be moved sufficiently away from

STANDARD SPECIFICATIONS OF GRADING Page 5 of 26 the bench area to allow for the recommended review of the horizontal bench prior to placement of fill.

Within a single fill area where grading procedures dictate two or more separate fills, temporary slopes (false slopes) may be created. When placing fill adjacent to a false slope, benching should be conducted in the same manner as above described. At least a 3-foot vertical bench should be established within the firm core of adjacent approved compacted fill prior to placement of additional fill. Benching should proceed in at least 3-foot vertical increments until the desired finished grades are achieved.

Prior to placement of additional compacted fill following an overnight or other grading delay, the exposed surface or previously compacted fill should be processed by scarification, moisture conditioning as needed to at or slightly above optimum moisture content, thoroughly blended and recompacted to a minimum of 90 percent of laboratory maximum dry density. Where unsuitable materials exist to depths of greater than one foot, the unsuitable materials should be over-excavated.

Following a period of flooding, rainfall or overwatering by other means, no additional fill should be placed until damage assessments have been made and remedial grading performed as described herein.

Rocks 12 inch in maximum dimension and smaller may be utilized in the compacted fill provided the fill is placed and thoroughly compacted over and around all rock. No oversize material should be used within 3 feet of finished pad grade and within 1 foot of other compacted fill areas. Rocks 12 inches up to four feet maximum dimension should be placed below the upper 10 feet of any fill and should not be closer than 15 feet to any slope face. These recommendations could vary as locations of improvements dictate. Where practical, oversized material should not be placed below areas where structures or deep utilities are proposed. Oversized material should be placed in windrows on a clean, overexcavated or unyielding compacted fill or firm natural ground surface. Select native or imported granular soil (S.E. 30 or higher) should be placed and thoroughly flooded over and around all windrowed rock, such that voids are filled. Windrows of oversized material should be staggered so those successive strata of oversized material are not in the same vertical plane.

It may be possible to dispose of individual larger rock as field conditions dictate and as recommended by the geotechnical consultant at the time of placement.

STANDARD SPECIFICATIONS OF GRADING Page 6 of 26 The contractor should assist the geotechnical consultant and/or his representative by digging test pits for removal determinations and/or for testing compacted fill. The contractor should provide this work at no additional cost to the owner or contractor's client.

Fill should be tested by the geotechnical consultant for compliance with the recommended relative compaction and moisture conditions. Field density testing should conform to ASTM Method of Test D 1556-00, D 2922-04. Tests should be conducted at a minimum of approximately two vertical feet or approximately 1,000 to 2,000 cubic yards of fill placed. Actual test intervals may vary as field conditions dictate. Fill found not to be in conformance with the grading recommendations should be removed or otherwise handled as recommended by the geotechnical consultant.

7.3 Fill Slopes

Unless otherwise recommended by the geotechnical consultant and approved by the regulating agencies, permanent fill slopes should not be steeper than 2:1 (horizontal: vertical).

Except as specifically recommended in these grading guidelines compacted fill slopes should be over-built two to five feet and cut back to grade, exposing the firm, compacted fill inner core. The actual amount of overbuilding may vary as field conditions dictate. If the desired results are not achieved, the existing slopes should be overexcavated and reconstructed under the guidelines of the geotechnical consultant. The degree of overbuilding shall be increased until the desired compacted slope surface condition is achieved. Care should be taken by the contractor to provide thorough mechanical compaction to the outer edge of the overbuilt slope surface.

At the discretion of the geotechnical consultant, slope face compaction may be attempted by conventional construction procedures including backrolling. The procedure must create a firmly compacted material throughout the entire depth of the slope face to the surface of the previously compacted firm fill intercore.

During grading operations, care should be taken to extend compactive effort to the outer edge of the slope. Each lift should extend horizontally to the desired finished slope surface or more as needed to ultimately established desired grades. Grade during construction should not be allowed to roll off at the edge of the slope. It may be helpful to elevate slightly the outer edge of the slope. Slough resulting from the placement of individual lifts should not be allowed to drift down over previous lifts. At intervals not exceeding four feet in vertical slope height or the capability of available equipment, whichever is less, fill slopes should be thoroughly dozer trackrolled.

For pad areas above fill slopes, positive drainage should be established away from the top-of-slope. This may be accomplished using a berm and pad gradient of at least two percent.

Section 8 - Trench Backfill

Utility and/or other excavation of trench backfill should, unless otherwise recommended, be compacted by mechanical means. Unless otherwise recommended, the degree of compaction should be a minimum of 90 percent of the laboratory maximum density.

Within slab areas, but outside the influence of foundations, trenches up to one foot wide and two feet deep may be backfilled with sand and consolidated by jetting, flooding or by mechanical means. If on-site materials are utilized, they should be wheel-rolled, tamped or otherwise compacted to a firm condition. For minor interior trenches, density testing may be deleted or spot testing may be elected if deemed necessary, based on review of backfill operations during construction.

If utility contractors indicate that it is undesirable to use compaction equipment in close proximity to a buried conduit, the contractor may elect the utilization of light weight mechanical compaction equipment and/or shading of the conduit with clean, granular material, which should be thoroughly jetted in-place above the conduit, prior to initiating mechanical compaction procedures. Other methods of utility trench compaction may also be appropriate, upon review of the geotechnical consultant at the time of construction.

In cases where clean granular materials are proposed for use in lieu of native materials or where flooding or jetting is proposed, the procedures should be considered subject to review by the geotechnical consultant. Clean granular backfill and/or bedding are not recommended in slope areas.

Section 9 - Drainage

Where deemed appropriate by the geotechnical consultant, canyon subdrain systems should be installed in accordance with CTE's recommendations during grading.

Typical subdrains for compacted fill buttresses, slope stabilization or sidehill masses, should be installed in accordance with the specifications.

STANDARD SPECIFICATIONS OF GRADING Page 8 of 26 Roof, pad and slope drainage should be directed away from slopes and areas of structures to suitable disposal areas via non-erodible devices (i.e., gutters, downspouts, and concrete swales).

For drainage in extensively landscaped areas near structures, (i.e., within four feet) a minimum of 5 percent gradient away from the structure should be maintained. Pad drainage of at least 2 percent should be maintained over the remainder of the site.

Drainage patterns established at the time of fine grading should be maintained throughout the life of the project. Property owners should be made aware that altering drainage patterns could be detrimental to slope stability and foundation performance.

Section 10 - Slope Maintenance

10.1 - Landscape Plants

To enhance surficial slope stability, slope planting should be accomplished at the completion of grading. Slope planting should consist of deep-rooting vegetation requiring little watering. Plants native to the southern California area and plants relative to native plants are generally desirable. Plants native to other semi-arid and arid areas may also be appropriate. A Landscape Architect should be the best party to consult regarding actual types of plants and planting configuration.

10.2 - Irrigation

Irrigation pipes should be anchored to slope faces, not placed in trenches excavated into slope faces.

Slope irrigation should be minimized. If automatic timing devices are utilized on irrigation systems, provisions should be made for interrupting normal irrigation during periods of rainfall.

<u>10.3 - Repair</u>

As a precautionary measure, plastic sheeting should be readily available, or kept on hand, to protect all slope areas from saturation by periods of heavy or prolonged rainfall. This measure is strongly recommended, beginning with the period prior to landscape planting.

If slope failures occur, the geotechnical consultant should be contacted for a field review of site conditions and development of recommendations for evaluation and repair.

If slope failures occur as a result of exposure to period of heavy rainfall, the failure areas and currently unaffected areas should be covered with plastic sheeting to protect against additional saturation.

> STANDARD SPECIFICATIONS OF GRADING Page 9 of 26

In the accompanying Standard Details, appropriate repair procedures are illustrated for superficial slope failures (i.e., occurring typically within the outer one foot to three feet of a slope face).

TYPICAL CANYON SUBDRAIN DETAIL STANDARD SPECIFICATIONS FOR GRADING

NOT TO SCALE

5-15

0-7

0-3

NO. 30

NO. 50

NO. 200

500' TO 1500'

> 1500'

6"

8"

Page 14 of 26

FRONT VIEW

SIDE VIEW

ATTACHMENT B

Geotechnical Investigation, Dated January 13, 2021

Construction Testing & Engineering, Inc.

Inspection | Testing | Geotechnical | Environmental & Construction Engineering | Civil Engineering | Surveying

PRELIMINARY GEOTECHNICAL INVESTIGATION PROPOSED JEFFERSON MIDDLE SCHOOL MODERNIZATION 823 ACACIA AVENUE OCEANSIDE, CALIFORNIA

Prepared for:

OCEANSIDE UNIFIED SCHOOL DISTRICT ATTENTION: MS. PENNY MCGREW 2111 MISSION AVENUE SOLANA BEACH, CALIFORNIA 92075

Prepared by:

CONSTRUCTION TESTING & ENGINEERING, INC. 1441 MONTIEL ROAD, SUITE 115 ESCONDIDO, CALIFORNIA 92026

CTE JOB NO.: 10-15771G

JANUARY 13, 2021

TABLE OF CONTENTS

1.0 INTRODUCTION AND SCOPE OF SERVICES	1
1.1 Introduction	1
1.2 Scope of Services	1
2.0 SITE DESCRIPTION	2
3.0 FIELD INVESTIGATION AND LABORATORY TESTING	3
3.1 Field Investigation	3
3.2 Laboratory Testing	4
4.0 PERCOLATION TESTING	4
4.1 Percolation Test Methods	5
4.2 Calculated Infiltrated Rate	5
5.0 GEOLOGY	7
5.1 General Setting	7
5.2 Geologic Conditions	7
5.2.1 Quaternary Previously Placed Fill	8
5.2.2 Quaternary Old Paralic Deposits	8
5.2.3 Tertiary San Onofre Breccia	9
5.3 Groundwater Conditions	9
5.4 Geologic Hazards	9
5.4.1 Surface Fault Rupture	10
5.4.2 Local and Regional Faulting	10
5.4.3 Historic Seismicity	12
5.4.4 Liquefaction and Seismic Settlement Evaluation	13
5.4.5 Tsunamis and Seiche Evaluation	14
5.4.6 Flooding	14
5.4.7 Landsliding	14
5.4.8 Compressible and Expansive Soils	16
5.4.9 Corrosive Soils	16
6.0 CONCLUSIONS AND RECOMMENDATIONS	17
6.1 General	17
6.2 Site Preparation	18
6.3 Site Excavation	21
6.4 Fill Placement and Compaction	21
6.5 Fill Materials	22
6.6 Temporary Construction Slopes	23
6.7 Foundation and Slab Recommendations	24
6.7.1 Foundations	24
6.7.2 Foundation Settlement	25
6.7.3 Foundation Setback	26
6.7.4 Interior Concrete Slabs	26
6.8 Seismic Design Criteria	27
6.9 Lateral Resistance and Earth Pressures	28
6.10 Exterior Flatwork	30
6.11 Vehicular Pavement	31
6.12 Drainage	33

6.13 Slopes	
6.14 Controlled Low Strength Materials (CLSM)	
6.15 Plan Review	
6.16 Construction Observation	
7.0 LIMITATIONS OF INVESTIGATION	

FIGURES

FIGURE 1	SITE LOCATION MAP
FIGURE 2	GEOLOGIC/ EXPLORATION LOCATION MAP
FIGURE 2A	CROSS SECTION A-A'
FIGURE 2B	CROSS SECTION B-B'
FIGURE 2C	CROSS SECTION C-C'
FIGURE 2D	CROSS SECTION D-D'
FIGURE 2E	CROSS SECTION E-E'
FIGURE 3	REGIONAL GEOLOGIC MAP
FIGURE 4	REGIONAL FAULT AND SEISMICITY MAP
FIGURE 5	CONCEPTUAL RETAINING WALL DRAINAGE DETAIL

APPENDICES

APPENDIX A	REFERENCES
APPENDIX B	FIELD EXPLORATION METHODS AND BORING LOGS
APPENDIX C	LABORATORY METHODS AND RESULTS
APPENDIX D	STANDARD GRADING SPECIFICATIONS
APPENDIX E	PERCOLATION TO INFILTRATION CALCULATIONS AND
	FIELD DATA
APPENDIX F	I-8 WORKSHEET
APPENDIX G	SLOPE STABILITY ANALYSIS

1.0 INTRODUCTION AND SCOPE OF SERVICES

1.1 Introduction

This report presents the results of the geotechnical investigation, performed by Construction Testing and Engineering, Inc. (CTE), and provides preliminary conclusions and geotechnical recommendations for the proposed modernization at the existing Jefferson Middle School campus in Oceanside, California. This geotechnical investigation was performed in general accordance with the terms of CTE proposal E20266, dated September 11, 2020. Preliminary geotechnical recommendations for excavations, fill placement, and foundation design for the proposed improvements are presented herein.

1.2 Scope of Services

The scope of services provided included:

- Review of readily available geologic and soils reports.
- Coordination of utility mark-out and location through USA DigAlert services and an independent utility locater.
- Obtaining appropriate San Diego County Department of Environmental Health (DEH) Boring Permits.
- Excavation of exploratory borings and soil sampling utilizing a truck-mounted drill rig and limited-access manual excavation equipment.
- Laboratory testing of selected soil samples.
- Description of the site geology and evaluation of potential geologic hazards.
- Engineering and geologic analysis.
- Preparation of this preliminary geotechnical report.

2.0 SITE DESCRIPTION

The subject site is located at 823 Acacia Avenue on the campus of Jefferson Middle School in Oceanside, California (Figure 1). The site is bounded by Acacia Avenue and North Carey Road to the east, Poplar Road to the north, Mission Elementary School to the south and descending slopes to the west. The current site area is illustrated on Figure 1. The subject site is currently developed with a middle school campus consisting of multiple structures, pavement and flatwork areas, an athletic field, landscaping, utilities and other associated improvements.

Based on reconnaissance and review of general site topography, the site area generally consists of a terrace that gently descends to the southwest. Adjacent slopes descend from the campus to the west and drainages generally trend in an east-west direction. Campus elevations range from approximately 195 feet above mean sea level (msl) in the northeast to 160 feet msl in the southwest. Descending slopes exist along the western boundary of the campus that range in height from approximately 80 to 100 feet with slope ratios of approximately 1:1 to 2:1 (horizontal: vertical).

At the date of this report, a proposed improvement plan has not been provided for this site. However, we anticipated modernization will consist of several new buildings and associated improvements across the campus area.

3.0 FIELD INVESTIGATION AND LABORATORY TESTING

3.1 Field Investigation

CTE performed the subsurface investigation on December 9 & 10, 2020 to evaluate underlying soil conditions. This fieldwork consisted of site reconnaissance and the excavation of 12 exploratory soil borings and eight percolation test holes. The borings were advanced to a maximum explored depth of approximately 30.4 feet below existing ground surface (bgs) and multiple borings encountered practical refusal in very dense underlying breccia. Borings B-1 to B-9 and B-12 were excavated by a CME-95 truck-mounted drill rig equipped with eight-inch-diameter, hollow-stem augers. Borings B-11 and B-12 were excavated with a manually advanced auger due to limited access. Bulk samples were collected from the cuttings, and relatively undisturbed samples were collected by driving Standard Penetration Test (SPT) and Modified California (CAL) samplers. Approximate locations of the exploratory soil borings and test holes are shown on the attached Figure 2.

Percolation test holes P-1 through P-4 as well as P-7 and P-8 were excavated with the truck-mounted drill rig with eight inch diameter augers. Due to limited access, percolation test holes P-5 and P-6 were excavated with a six inch diameter manually operated auger. The percolation test hole depths ranged from approximately 2.3 to 5.3 feet below ground surface (bgs).

Soils were logged in the field by a CTE Engineering Geologist, and were visually classified in general accordance with the Unified Soil Classification System (USCS). The field descriptions have been modified, where appropriate, to reflect laboratory test results. Boring logs, including descriptions of the soils encountered, are included in Appendix B.

3.2 Laboratory Testing

Laboratory tests were conducted on selected soil samples for classification purposes, and to evaluate physical properties and engineering characteristics. Laboratory tests included: In-place Moisture and Density, Expansion Index, Resistance "R-value", Grain Size Analysis, Atterberg Limits, Direct Shear, Consolidation, and Chemical Characteristics. Test descriptions and laboratory test results are included in Appendix C.

4.0 PERCOLATION TESTING

The percolation test holes were located based on potential stormwater BMP areas designated by the project civil engineer. Eight percolation tests were performed to depths ranging from approximately 2.3 to 5.3 feet below the ground surface (bgs). The attached Figure 2 shows the approximate percolation test locations. The evaluation was performed in accordance with Appendix C of the Model BMP Design Manual for the San Diego Region "Geotechnical and Groundwater Investigation Requirements", dated January 2018.

4.1 Percolation Test Methods

The percolation tests were performed in general accordance with methods approved by the San Diego Region BMP Design Manual with a presoak period of approximately 18 to 19 hours. Percolation test results and calculated infiltration rates are presented below in Table 4.2. Field Data and percolation to infiltration calculations are included in Appendix E.

4.2 Calculated Infiltrated Rate

As per the San Diego Region BMP design documents (2018) infiltration rates are to be evaluated using the Porchet Method. San Diego BMP design documents utilized the Porchet Method through guidance of the County of Riverside (2011). The intent of calculating the infiltration rate is to take into account bias inherent in percolation test borehole sidewall infiltration that would not occur at a basin bottom where such sidewalls are not present.

The infiltration rate (I_t) is derived by the equation:

$$I_{t} = \underbrace{\Delta H \pi r 2 60}_{\Delta t(\pi r 2 + 2\pi r H_{avg})} = \underbrace{\Delta H 60 r}_{\Delta t(r+2H_{avg})}$$

Where:

 $\begin{array}{ll} I_t &= tested \ infiltration \ rate, \ inches/hour \\ \Delta H &= change \ in \ head \ over \ the \ time \ interval, \ inches \\ \Delta t &= time \ interval, \ minutes \\ * \ r &= effective \ radius \ of \ test \ hole \\ H_{avg} &= average \ head \ over \ the \ time \ interval, \ inches \\ \end{array}$

CTE Job No. 10-15771G

Given the measured percolation rates, the calculated infiltration rates are presented with and without a Factor of Safety applied in Table 4.2 below. The civil engineer of record should determine an appropriate factor of safety to be applied via completion of Worksheet D.5-1 of Appendix County of San Diego "Best Management Practice Design Manual", Appendix D or other approved methods. CTE does not recommend using a factor of safety of less than 2.0. An I-8 Worksheet is included in Appendix F.

TABLE 4.2 RESULTS OF PERCOLATION TESTING WITH FACTOR OF SAFETY APPLIED								
Test Location	Test Depth (inches)	Case	Geologic Unit	Percolation Rate (inches per hour)	Infiltration Rate (inches per hour)	Infiltration Rate with FOS of 2 Applied (inches per hour)		
P-1	85	III	Tso	0.500	0.078	0.039		
P-2	84	III	Qppf	0.250	0.038	0.019		
P-3	72	III	Qppf	1.500	0.273	0.136		
P-4	85	Ι	Tso	0.000	0.000	0.000		
P-5	84	III	Tso	0.250	0.044	0.022		
P-6	72	III	Tso	0.750	0.137	0.069		
P-7	84	III	Tso	0.125	0.020	0.010		
P-8	72	III	Tso	0.250	0.041	0.021		

NOTESWater level was measured from a fixed point at the top of the hole.Weather was sunny during percolation testing.Qppf = Quaternary Previously Placed FillTso = Tertiary San Onofre BrecciaTest holes were P-1 to P-4 as well as P-7 and P-8 were eight inches in diameter.

Test holes P-5 and P-6 were six inches in diameter.

Page 7

5.0 GEOLOGY

5.1 General Setting

Oceanside is located with the Peninsular Ranges physiographic province that is characterized by northwest-trending mountain ranges, intervening valleys, and predominantly northwest trending active regional faults. The San Diego Region can be further subdivided into the coastal plain area, a central mountain–valley area, and the eastern mountain valley area. The project site is located within the coastal plain area. The coastal plain sub-province ranges in elevation from approximately sea level to 1200 feet above mean sea level (msl). It is characterized by Cretaceous and Tertiary sedimentary deposits that onlap an eroded basement surface consisting of Jurassic and Cretaceous crystalline rocks that have been repeatedly eroded and infilled and by alluvial processes throughout the Quaternary Period in response to regional uplift. This has resulted in a geomorphic landscape of uplifted alluvial and marine terraces that are dissected by current active alluvial drainages.

5.2 Geologic Conditions

Based on the regional geologic map prepared by Kennedy and Tan (2007), Quaternary Old Paralic Deposits and Tertiary San Onofre Formation are the near surface geologic units that underlie the site (Figure 3). Based on recent explorations, Quaternary Previously Placed Fill was observed over the Old Paralic Deposits with Tertiary San Onofre Breccia at depth. Descriptions of the geologic units

encountered during the investigation are presented below. Surficial geologic materials are depicted on Figure 2 and generalized geologic cross-sections are presented on Figures 2A, 2B, 2C, 2D, and 2E.

5.2.1 Quaternary Previously Placed Fill (Landfill Waste)

Where observed, the Previously Placed Fill generally consists of loose to medium, brown to grayish brown, silty to clayey fine to medium grained sand. Exploratory excavations encountered Previously Placed Fill to a maximum depth of approximately 21.0 feet bgs in the area of boring B-9. Landfill waste was observed in infilled drainages in and adjacent to the southern portion of the campus. Landfill waste consisted entirely of unsuitable and detrimental materials and these areas are anticipated to be completely avoided as potential improvement areas. Localized areas with deeper fill may be encountered during site grading.

5.2.2 Quaternary Old Paralic Deposits

Old Paralic Deposits were observed in borings B-8, B-10, B-11 and B-12. Where observed, these materials generally consist of very dense, reddish brown, silty to clayey fine to medium grained sand. This geologic unit was observed to be relatively thin in the northern higher elevations of the site and increased in thickness to the south.

5.2.3 Tertiary San Onofre Breccia

San Onofre Breccia was observed at depth in all the borings. Where observed, this unit generally consisted of very dense, olive brown to gray brown breccia that excavates to silty fine grained sand with angular gravel and cobble. This underlying geologic unit is anticipated at depth throughout the site.

5.3 Groundwater Conditions

Groundwater was not encountered in the recent borings that were advanced to a maximum explored depth of approximately 30.4 feet bgs. While groundwater conditions may vary, especially following periods of sustained precipitation or irrigation, it is generally not anticipated to adversely affect shallow construction activities or the completed improvements, if irrigation is limited and proper site drainage is designed, installed, and maintained per the recommendations of the project civil engineer. However, groundwater could have the potential to perch on the underlying breccia, especially during or following the rainy season, which could impact grading or construction excavations.

5.4 Geologic Hazards

Geologic hazards considered to have potential impacts to site development were evaluated based on field observations, literature review, and laboratory test results. The following paragraphs discuss geologic hazards considered and associated potential risk to the site.
5.4.1 Surface Fault Rupture

In accordance with the Alquist-Priolo Earthquake Fault Zoning Act, (ACT), the State of California established Earthquake Fault Zones around known active faults. The purpose of the ACT is to regulate the development of structures intended for human occupancy near active fault traces in order to mitigate hazards associated with surface fault rupture. According to the California Geological Survey (Special Publication 42, Revised 2018), a fault that has had surface displacement within the last 11,700 years is defined as a Holocene-active fault and is either already zoned or is pending zonation in accordance with the ACT. There are several other definitions of fault activity that are used to regulate dams, power plants, and other critical facilities, and some agencies designate faults that are documented as older than Holocene (last 11,700 years) and younger than late Quaternary (1.6 million years) as potentially active faults that are subject to local jurisdictional regulations.

Based on the site reconnaissance and review of referenced literature, the site is not located within a State-designated Earthquake Fault Zone, no known active fault traces underlie or project toward the site, and no known potentially active fault traces project toward the site.

5.4.2 Local and Regional Faulting

The United States Geological Survey (USGS), with support of State Geological Surveys, and reviewed published work by various researchers, have developed a Quaternary Fault and Fold Database of faults and associated folds that are believed to be sources of earthquakes

with magnitudes greater than 6.0 that have occurred during the Quaternary (the past 1.6 million years). The faults and folds within the database have been categorized into four Classes (Class A-D) based on the level of evidence confirming that a Quaternary fault is of tectonic origin and whether the structure is exposed for mapping or inferred from fault related deformational features. Class A faults have been mapped and categorized based on age of documented activity ranging from Historical faults (activity within last 150 years), Latest Quaternary faults (activity within last 15,000 years), Late Quaternary (activity within last 130,000 years), to Middle to late Quaternary (activity within last 1.6 million years). The Class A faults are considered to have the highest potential to generate earthquakes and/or surface rupture, and the earthquakes and surface rupture potential generally increases from oldest to youngest. The evidence for Quaternary deformation and/or tectonic activity progressively decreases for Class B and Class C faults. When geologic evidence indicates that a fault is not of tectonic origin it is considered to be a Class D structure. Such evidence includes joints, fractures, landslides, or erosional and fluvial scarps that resemble fault features, but demonstrate a non-tectonic origin.

The nearest known Class A fault is the Newport-Inglewood-Rose Canyon Fault Zone (<15,000 years), which is approximately 10.0 kilometers west of the site. The attached Figure 4 shows regional faults and seismicity with respect to the site.

5.4.3 Historic Seismicity

The level of seismicity within recent history (last 50 years) of the greater San Diego area is relatively low compared to other areas of southern California and northwestern Baja California. Only a few small to moderate earthquakes have been reported in the greater San Diego area during the period of instrumental recordings, which began in the early 1900s. Most of the high seismic activity in the region is associated with the Elsinore Fault Zone and the San Jacinto Fault Zone, located approximately 29 and 65 kilometers to the northeast of the site respectively. In the western portion of San Diego County a series of small-to-moderate earthquakes in July 1985 were reportedly associated with the Rose Canyon Fault Zone (Reichle, 1985). The largest event in that series was M4.7, which was centered within San Diego Bay. A similar series of earthquakes in coastal San Diego occurred in 1964 (Simons, 1979).

Based on review of the USGS Earthquake Archives (<u>http://earthquake.usgs.gov/earthquakes</u>/<u>search/</u>) significant earthquakes within 100 kilometers of the site with magnitudes greater than M5.5 are provided in Table 5.4.3.

TABLE 5.4.3 Regional Earthquake History						
EARTHQUAKE DATE (yr-mo-day)	EARTHQUAKE TIME (UTC)	MAGNITUDE	ESTIMATED DEPTH (km)	GENERAL LOCATION		
1918-04-21	22:32:29	6.7	10.0	Southern California		
1933-03-11	01:54:09	6.4	6.0	WNW of Newport Beach		
1937-03-25	16:49:02	6.0	6.0	WSW of Oasis		
1951-12-26	00:46:54	5.8	6.0	NNE of San Clemente Island		

CTE Job No. 10-15771G

5.4.4 Liquefaction and Seismic Settlement Evaluation

Liquefaction occurs when saturated fine-grained sands or silts lose their physical strengths during earthquake-induced shaking and behave like a liquid. This is due to loss of point-to-point grain contact and transfer of normal stress to the pore water. Liquefaction potential varies with water level, soil type, material gradation, relative density, and probable intensity and duration of ground shaking. Seismic settlement can occur with or without liquefaction; it results from densification of loose soils.

The proposed structural improvement areas at site are underlain at shallow depths by very dense Old Paralic Deposits and San Onofre Breccia. Based on the noted subsurface conditions, the potential for liquefaction or significant seismic settlement at the site is considered to be low.

Page 14

5.4.5 Tsunamis and Seiche Evaluation

According to McCulloch (1985), the potential in the San Diego County coastal area for "100year" and "500-year" tsunami waves is approximately five and eight feet, or less. This suggests that there is a negligible probability of a tsunami reaching the site based on elevation of the area and distance from the Pacific Ocean. The site is not located in a zone of potential tsunami inundation based on emergency planning maps prepared by California Emergency Management Agency and CGS. In addition, oscillatory waves (seiches) are considered unlikely due to the absence of nearby confined bodies of water.

5.4.6 Flooding

Based on Federal Emergency Management Agency mapping (FEMA 2012), site improvement areas are located within Zone X, which is defined as: "Areas determined to be outside of the 0.2% annual chance floodplain".

5.4.7 Landsliding

The project site is located near the top of an approximately 100 feet high 1:1 (horizontal: vertical) fill slope that descends to the west from an elevated area with paved basketball courts at the top. An approximately 80 feet high 2:1 fill slope also descends from the athletic field in the southwestern portion of the campus. According to mapping by Tan (1995), the site is located in areas 3-1, which is described as "Generally Susceptible" to landsliding.

Kennedy and Tan (2008) do not indicate the presence of mapped landslides at the subject site. However, a surficial slope failure was observed on one of the northern slopes that appeared to primarily consist of Previously Placed Fill on the upper portion of the slope.

Based on investigation findings, over-steepened slopes (steeper than 2 horizontal to 1 vertical slope ratio) consisting of Previously Placed Fill are considered to be unstable and/or unsuitable in their current condition and are susceptible to slope failures. However, native slopes consisting of San Onofre Breccia were generally found to be stable in their current condition and the potential for deep seated landslides within this unit is considered to be low.

The final input and output data from the slope stability evaluation are presented in Appendix G. For the analysis, the existing slopes were modeled based on topographic and geologic conditions. Based on laboratory direct shear testing, the San Onofre Breccia yielded soil strength values of phi = 46.9° and 47.2° and cohesion = 680 psf and 940 psf. Based on remolded shear testing, the Previously Placed Fill yielded a soil strength value of phi = 37.3° and cohesion = 310 psf. To be conservative, Previously Placed Fill values of phi = 30.0° and cohesion = 300 psf and San Onofre Breccia values of phi = 40.0° and cohesion = 600 psf were utilized for the analysis. Based on the findings, existing slope conditions consisting of San Onofre Breccia are anticipated to exhibit global factors of safety in excess of 1.5. However, oversteepened site slopes consisting of Previously Placed Fill exhibited factors of safety below 1.5. It is anticipated that surficial soils within the slopes consisting of

Page 16

Previously Placed Fill will continue to erode and may develop shallow slumps and failures on slope faces. As such, it is generally recommended that all Previously Placed Fill and fill slopes at site will be removed and properly recompacted where they can impact proposed improvements, and reconstructed fill slopes will be no steeper than 2:1.

5.4.8 Compressible and Expansive Soils

The Previously Placed Fill and desiccated near surface soils are considered to be potentially compressible in their current condition. Therefore, it is recommended that these soils be overexcavated, where necessary, and properly compacted beneath proposed improvement areas as recommended herein and as determined to be necessary during construction. Based on the field data, site observations, and CTE's experience with similar soils in the vicinity of the site, native underlying soils are not considered to be subject to significant compressibility under the anticipated loads.

Based on laboratory testing, near surface soils at the site may exhibit low expansion potential (Expansion Index of 50 or less). Verification of expansion potential should be performed during site excavations and grading.

5.4.9 Corrosive Soils

Testing of representative site soils was performed to evaluate the potential corrosive effects on concrete foundations and buried metallic utilities. Soil environments detrimental to concrete generally have elevated levels of soluble sulfates and/or pH levels less than 5.5.

Page 17

According to the American Concrete Institute (ACI) Table 318 4.3.1, specific guidelines have been provided for concrete where concentrations of soluble sulfate (SO₄) in soil exceed 0.10 percent by weight. These guidelines include low water:cement ratios, increased compressive strength, and specific cement type requirements. A minimum resistivity value less than approximately 5,000 ohm-cm and/or soluble chloride levels in excess of 200 ppm generally indicate a corrosive environment for buried metallic utilities and untreated conduits.

Sulfate test results indicate that near-surface soils at the site generally present a negligible corrosion potential for Portland cement concrete. Based on resistivity and chloride testing, the site soils have been interpreted to have a low corrosivity potential to buried metallic improvements. However, it would likely be prudent for buried utilities to utilize plastic piping and/or conduits, where feasible. However, CTE does not practice corrosion engineering. Therefore, if corrosion of improvements is of more significant concern, a qualified corrosion engineer could be consulted.

6.0 CONCLUSIONS AND RECOMMENDATIONS

6.1 General

CTE concludes that the proposed improvements on the site are feasible from a geotechnical standpoint, provided the preliminary recommendations in this report are incorporated into the design and construction of the project. Recommendations for the proposed earthwork and improvements

are included in the following sections and Appendix D. However, recommendations in the text of this report supersede those presented in Appendix D should conflicts exist. These preliminary recommendations should either be confirmed as appropriate or updated following required excavations, demolition of existing improvements, and observations during site preparation.

An update geotechnical report or addendum should be performed by CTE once actual proposed improvements and location have been more refined by the design team. In general, we recommend that distress sensitive proposed improvements not be located within a 1.25:1 plane of existing Landfill Waste materials. In addition, we recommend that existing deep Previously Placed Fills and fill slopes be overexcavated and properly recompacted where they will be located within a 1.25:1 plane of proposed distress sensitive improvements.

6.2 Site Preparation

Prior to grading, areas to receive distress sensitive improvements should be cleared of existing debris and deleterious materials. Objectionable materials, such as construction or demolition debris and vegetation not suitable for structural backfill should be properly disposed of off-site. Recommendations for grading for structure bearing entirely in engineered fill or entirely in native materials, as well as for slopes, flatwork, pavement, and other non-structural improvement areas are provided below. Structure foundations for a single building or structure improvement should not span cut/fill transitions. For structures to bear entirely in engineered fill, the remedial excavations should be conducted to a minimum depth of five feet below existing or proposed grade, two feet below the bottom of proposed foundations, or to the depth of competent native materials, whichever is greatest. In order to provide relatively uniform conditions under the proposed structures, the minimum depth of proposed fill should also be one half of the maximum depth of fill beneath a single structure footprint. If loose or otherwise unsuitable materials are encountered at the base of overexcavations, additional excavation to the depth of suitable material may be necessary. Remedial excavations should extend laterally at least five feet beyond the limits of the proposed improvements or the distance resulting from a 1:1 (horizontal: vertical) extended down to suitable material, where feasible. If overexcavations encroach upon property lines or adjacent structures the temporary excavation should generally be sloped at a 1:1 (horizontal to vertical) or flatter, to the prescribed overexcavation depth. Depending upon proximity and condition of exposed soils, overexcavation in slot cuts may be recommended by the geotechnical engineer.

Alternatively, structural foundations may be extended to the depth of suitable formational material provided all foundations for the structure bear entirely on competent formational materials. If this method is utilized, in order to provide uniform slab-on-grade support, it is recommended that overexcavation extends to a depth of one foot below existing or proposed rough building pad grades, or to the depth of suitable material, whichever is greatest.

CTE Job No. 10-15771G

Overexcavations for proposed surface improvement areas, such as pavement or flatwork should be conducted to a minimum depth of two feet below existing or proposed subgrade, or to the depth of suitable material, whichever is deepest.

If encountered, existing below-ground utilities should be redirected around proposed structures. Existing utilities at an elevation to extend through the proposed footings should generally be sleeved and caulked to minimize the potential for moisture migration below the building slabs. Abandoned pipes exposed by grading should be securely capped or filled with minimum two-sack cement/sand slurry to help prevent moisture from migrating beneath foundation and slab soils.

A geotechnical representative from CTE should observe the exposed ground surface prior to placement of compacted fill or improvements, to verify the competency of exposed subgrade materials. After approval by this office, the exposed subgrades to receive fill should be either proof rolled or scarified a minimum of eight inches, moisture conditioned, and properly compacted prior to fill placement.

As stated, an update geotechnical report or addendum should be performed by CTE once actual proposed improvements and location have been more refined by the design team. In general, we recommend that distress sensitive proposed improvements not be located within a 1.25:1 plane of

CTE Job No. 10-15771G

existing Landfill Waste materials. In addition, we recommend that existing deep Previously Placed Fills and fill slopes be overexcavated and properly recompacted where they will be located within a 1.25:1 plane of proposed distress sensitive improvements.

6.3 Site Excavation

Based on CTE's observations, shallow excavations at the site should generally be feasible using well-maintained heavy-duty construction equipment run by experienced operators. However, excavations within the underlying Old Paralic Deposits and San Onofre Breccia will likely encounter cemented cobble zones resulting in very difficult excavation that may require specialized equipment. Excavations in Landfill Waste materials should be avoided.

6.4 Fill Placement and Compaction

Following the recommended overexcavation and removal of loose or disturbed soils, areas to receive fills should be either proof rolled or scarified approximately eight inches, moisture conditioned, and properly compacted. Fill and backfill should be compacted to a minimum relative compaction of 90 percent at above optimum moisture content (minimum three percent above optimum for clayey soils), as evaluated by ASTM D 1557. The optimum lift thickness for fill soil depends on the type of compaction equipment used. Generally, backfill should be placed in uniform, horizontal lifts not exceeding eight inches in loose thickness. Fill placement and compaction should be conducted in conformance with local ordinances, and should be observed and tested by a CTE geotechnical representative.

6.5 Fill Materials

Properly moisture conditioned, low expansion potential soils derived from the on-site materials are considered suitable for reuse on the site as compacted fill. If used, these materials should be screened of organics and materials generally greater than three inches in maximum dimension. Irreducible materials greater than three inches in maximum dimension should not be used in shallow fills (within three feet of proposed grades). In utility trenches, adequate bedding should surround pipes.

Imported fill beneath structures and flatwork should have an Expansion Index of 20 or less (ASTM D 4829). Imported fill soils for use in structural or slope areas should be evaluated by the soils engineer a minimum of two weeks before being imported to the site.

For retaining walls, backfill located within a 45-degree wedge extending up from the bottom of the heel foundation of the wall should consist of soil having an Expansion Index of 20 or less (ASTM D 4829) with less than 30 percent passing the No. 200 sieve. The upper 12 to 18 inches of wall backfill should consist of lower permeability soils, in order to reduce surface water infiltration behind walls. The project structural engineer and/or architect should detail proper wall backdrains, including gravel drain zones, fills, filter fabric and perforated drain pipes. A conceptual wall drainage detail is provided in Figure 5.

6.6 Temporary Construction Slopes

The following recommended slopes should be relatively stable against deep-seated failure, but may experience localized sloughing. On-site soils are considered Type B and Type C soils with recommended slope ratios as set forth in Table 5.6.

TABLE 6.6 RECOMMENDED TEMPORARY SLOPE RATIOS					
SOIL TYPE	SLOPE RATIO (Horizontal: vertical)	MAXIMUM HEIGHT			
B (Old Paralic Deposits and San Onofre Breccia)	1:1 (OR FLATTER)	10 Feet			
C (Previously Placed Fill)	1.5:1 (OR FLATTER)	10 Feet			

Actual field conditions and soil type designations must be verified by a "competent person" while excavations exist, according to Cal-OSHA regulations. In addition, the above sloping recommendations do not allow for surcharge loading at the top of slopes by vehicular traffic, equipment or materials. Appropriate surcharge setbacks must be maintained from the top of all unshored slopes.

6.7 Foundation and Slab Recommendations

The following recommendations are for preliminary design purposes only. These foundation recommendations should be re-evaluated after review of the project grading and foundation plans, and after completion of rough grading of the building pad areas. Upon completion of rough pad grading, Expansion Index of near surface soils should be verified, and these recommendations should be updated, if necessary.

6.7.1 Foundations

Foundation recommendations presented herein are based on the anticipated very low to low expansion potential of near surface soils after remedial site grading is performed (Expansion Index of 50 or less).

Following the recommended preparatory grading, continuous and isolated spread footings are anticipated to be suitable for use at this site. Foundation dimensions and reinforcement should be based on allowable bearing values of 2,500 pounds per square foot (psf) for minimum 18-inch wide footings embedded a minimum of 24-inches below lowest adjacent subgrade elevation. Isolated footings should be at least 24 inches in minimum dimension. The provided bearing value may be increased by 250 psf for each additional six inches of embedment up to a maximum static value of 3,000 psf. The allowable bearing value may be increased by one-third for short-duration loading, which includes the effects of wind or

Page 25

seismic forces. Based on the recommended preparatory grading, it is anticipated that all footings will be founded entirely in properly recompacted fill materials or entirely within suitable formational material. Footings should not span cut to fill interfaces.

Minimum reinforcement for continuous footings should consist of four No. 5 reinforcing bars; two placed near the top and two placed near the bottom, or as per the project structural engineer. The structural engineer should design isolated footing reinforcement. An uncorrected subgrade modulus of 120 pounds per cubic inch is considered suitable for elastic foundation design.

The structural engineer should provide recommendations for reinforcement of any spread footings and footings with pipe penetrations. Footing excavations should generally be maintained at above optimum moisture content until concrete placement.

6.7.2 Foundation Settlement

The maximum total static settlement is expected to be on the order of 1.0 inch and the maximum differential settlement is expected to be on the order of 0.5 inches over a distance of 40 linear feet. Due to the generally dense nature of underlying native materials, dynamic settlement is not expected to adversely affect the proposed buildings.

6.7.3 Foundation Setback

Footings for structures should be designed such that the horizontal distance from the face of adjacent slopes to the outer edge of the footing is at least 15 feet. In addition, footings should bear beneath a 1:1 plane extended up from the nearest bottom edge of adjacent trenches and/or excavations. Deepening of affected footings may be a suitable means of attaining the prescribed setbacks.

6.7.4 Interior Concrete Slabs

Lightly loaded concrete slabs for non-traffic areas should be a minimum of 5.0 inches thick. Minimum slab reinforcement should consist of #4 reinforcing bars placed on maximum 18inch centers, each way, at or above mid-slab height, but with proper cover. More stringent recommendations per the project structural engineer supersede these recommendations, as applicable.

In moisture-sensitive floor areas, a suitable vapor retarder of at least 15-mil thickness (with all laps or penetrations sealed or taped) overlying a four-inch layer of consolidated, granular aggregate base or gravel (or sand exhibiting an SE of 30 or more) should be installed. An optional maximum two-inch layer of similar material may be placed above the vapor retarder to help protect the membrane during steel and concrete placement. This recommended protection is generally considered typical in the industry. If proposed floor areas or coverings are considered especially sensitive to moisture emissions, additional recommendations from a specialty consultant could be obtained. CTE is not an expert at preventing moisture penetration through slabs. A qualified architect or other experienced professional should be contacted if moisture penetration is a more significant concern.

Slabs subjected to heavier loads or traffic will require thicker slab sections and/or increased reinforcement. A 110-pci subgrade modulus is considered suitable for elastic design of minimally embedded improvements such as slabs-on-grade.

Subgrade materials should be maintained or brought to a minimum of two percent (three percent for clayey soils) or greater above optimum moisture content until slab underlayment and concrete are placed.

6.8 Seismic Design Criteria

The seismic ground motion values listed in the table below were derived in accordance with the ASCE 7-16 Standard that is incorporated into the 2019 California Building Code. This was accomplished by establishing the Site Class based on the soil properties at the site, and calculating site coefficients and parameters using the using the SEAOC-OSHPD U.S. Seismic Design Maps application. Seismic ground motion values are based on the approximate site coordinates of 33.2102° latitude and -117.3635° longitude. These values are intended for the design of structures to resist the effects of earthquake ground motions.

TABLE 6.8 SEISMIC GROUND MOTION VALUES (CODE-BASED) 2019 CBC AND ASCE 7-16					
PARAMETER	VALUE	2019 CBC/ASCE 7-16 REFERENCE			
Site Class	С	ASCE 7-16, Chapter 20			
Mapped Spectral Response Acceleration Parameter, S _S	1.005	Figure 1613.2.1 (1)			
Mapped Spectral Response Acceleration Parameter, S ₁	0.369	Figure 1613.2.1 (2)			
Seismic Coefficient, F _a	1.200	Table 1613.2.3 (1)			
Seismic Coefficient, F_v	1.500	Table 1613.2.3 (2)			
MCE Spectral Response Acceleration Parameter, S _{MS}	1.206	Section 1613.2.3			
MCE Spectral Response Acceleration Parameter, S _{M1}	0.553	Section 1613.2.3			
Design Spectral Response Acceleration, Parameter S _{DS}	0.804	Section 1613.2.5(1)			
Design Spectral Response Acceleration, Parameter S_{D1}	0.369	Section 1613.2.5 (2)			
Peak Ground Acceleration PGA _M	0.526	ASCE 16, Section 11.8.3			

6.9 Lateral Resistance and Earth Pressures

Lateral loads acting against structures may be resisted by friction between the footings and the supporting soil or passive pressure acting against structures. If frictional resistance is used, allowable coefficients of friction of 0.30 (total frictional resistance equals the coefficient of friction multiplied by the dead load) for concrete cast directly against compacted fill or native material is recommended. A design passive resistance value of 250 pounds per square foot per foot of depth

CTE Job No. 10-15771G

(with a maximum value of 2,000 pounds per square foot) may be used. The allowable lateral resistance can be taken as the sum of the frictional resistance and the passive resistance, provided the passive resistance does not exceed two-thirds of the total allowable resistance.

If proposed, retaining walls backfilled using granular soils may be designed using the equivalent fluid unit weights given in Table 6.9 below.

TABLE 6.9 EQUIVALENT FLUID UNIT WEIGHTS (Gh) (pounds per cubic foot)					
WALL TYPE	SLOPE BACKFILL 2:1 (HORIZONTAL: VERTICAL)				
CANTILEVER WALL (YIELDING)	40	60			
RESTRAINED WALL	60	85			

Late

ral pressures on cantilever retaining walls (yielding walls) over six feet high due to earthquake motions may be calculated based on work by Seed and Whitman (1970). The total lateral earth pressure against a properly drained and backfilled cantilever retaining wall above the groundwater level can be expressed as:

$$\mathbf{P}_{\mathrm{AE}} = \mathbf{P}_{\mathrm{A}} + \Delta \mathbf{P}_{\mathrm{AE}}$$

For non-yielding (or "restrained") walls, the total lateral earth pressure may be similarly calculated based on work by Wood (1973):

$$\mathbf{P}_{\mathrm{KE}} = \mathbf{P}_{\mathrm{K}} + \Delta \mathbf{P}_{\mathrm{KE}}$$

Where $P_A/b = Static$ Active Earth Pressure = $G_h H^2/2$ $P_K/b = Static$ Restrained Wall Earth Pressure = $G_h H^2/2$ $\Delta P_{AE}/b =$ Dynamic Active Earth Pressure Increment = (3/8) k_h γH^2 $\Delta P_{KE}/b =$ Dynamic Restrained Earth Pressure Increment = k_h γH^2 b = unit length of wall (usually 1 foot) $k_h = 1/2^* PGA_m$ (PGA_m given previously Table 6.8) $G_h =$ Equivalent Fluid Unit Weight (given previously Table 6.9) H = Total Height of the retained soil $\gamma =$ Total Unit Weight of Soil \approx 135 pounds per cubic foot

*It is anticipated that the 1/2 reduction factor will be appropriate for proposed walls that are not substantially sensitive to movement during the design seismic event. Proposed walls that are more sensitive to such movement could utilize a 2/3 reduction factor. If any proposed walls require minimal to no movement during the design seismic event, no reduction factor to the peak ground acceleration should be used. The project structural engineer of record should determine the appropriate reduction factor to use (if any) based on the specific proposed wall characteristics.

The static and increment of dynamic earth pressure in both cases may be applied with a line of action

located at H/3 above the bottom of the wall (SEAOC, 2013).

These values assume non-expansive backfill and free-draining conditions. Measures should be taken

to prevent moisture buildup behind all retaining walls. Drainage measures should include free-

draining backfill materials and sloped, perforated drains. These drains should discharge to an

appropriate off-site location. Waterproofing should be as specified by the project architect.

6.10 Exterior Flatwork

Flatwork should be installed with crack-control joints at appropriate spacing as designed by the project architect to reduce the potential for cracking in exterior flatwork caused by minor movement of subgrade soils and concrete shrinkage. Additionally, it is recommended that flatwork measure a

Page 31

minimum 4.5 inches in thickness and be installed with at least number 4 reinforcing bars at 18-inch centers, each way, at or above mid-height of slab, but with proper concrete cover, or with other reinforcement per the applicable project designer. Flatwork that should be installed with crack control joints, includes driveways, sidewalks, and architectural features. All subgrades should be prepared according to the earthwork recommendations previously given before placing concrete. Positive drainage should be established and maintained next to all flatwork. Subgrade materials should be maintained at a minimum of two percent above optimum moisture content until the time of concrete placement.

6.11 Vehicular Pavement

The proposed improvements include paved vehicle drive and parking areas. Presented in Table 5.11 are preliminary pavement sections utilizing laboratory determined Resistance "R" Value. Actual traffic area slab sections to be provided by the structural designer. Beneath proposed pavement areas, the upper 12 inches of subgrade and all base materials should be compacted to 95% relative compaction in accordance with ASTM D1557, and at a minimum of two percent above optimum moisture content.

TABLE 6.11 RECOMMENDED PAVEMENT THICKNESS						
Traffic Area	Assumed Traffic Index	Preliminary Subgrade "R"-Value	Asphalt Pavements AC Class II Thickness (inches) (inches) Class II Aggregate Base Thickness (inches)		Portland Cement Concrete Pavements, on Subgrade Soils (inches)	
Drive Areas & Infrequent Emergency Vehicle Access	6.0	15+	4.0	10.0	7.5	
Parking Areas	5.0	15+	3.0	8.0	7.0	

* Caltrans Class 2 aggregate base

** Concrete should have a modulus of rupture of at least 600 psi

Following rough site grading, CTE laboratory testing of representative subgrade soils for as-graded "R"-Value should be performed to verify adequacy of pavement sections.

Asphalt paved areas should be designed, constructed, and maintained in accordance with the recommendations of the Asphalt Institute, or other widely recognized authority. Concrete paved areas should be designed and constructed in accordance with the recommendations of the American Concrete Institute or other widely recognized authority, particularly with regard to thickened edges, joints, and drainage. The Standard Specifications for Public Works construction ("Greenbook") or Caltrans Standard Specifications may be referenced for pavement materials specifications.

6.12 Drainage

Surface runoff should be collected and directed away from improvements by means of appropriate erosion-reducing devices and positive drainage should be established around the proposed improvements. Positive drainage should be directed away from improvements at a gradient of at least two percent for a distance of at least five feet. However, the project civil engineers should evaluate the on-site drainage and make necessary provisions to keep surface water from affecting the site.

Generally, CTE recommends against allowing water to infiltrate building pads or adjacent to slopes. This is even more important on sites with ascending and descending adjacent slopes. Furthermore, the site is adjacent to a areas of Landfill Waste where water infiltration could be even more problematic. However, CTE understands that some agencies are encouraging the use of storm-water cleansing devices. Use of such devices tends to increase the possibility of adverse effects associated with high groundwater including slope instability and liquefaction. See Appendix E for further discussion of site infiltration.

6.13 Slopes

Based on anticipated soil strength characteristics, slopes should be constructed at ratios of 2:1 (horizontal: vertical) or flatter. These slope inclinations should exhibit factors of safety greater than 1.5. If improvements are proposed along the northwestern slopes where an existing shallow slope

failure has occurred, buttressing with a fill or geogrid reinforced fill slope would likely be necessary, unless the subject slope(s) were cut back as part of the construction.

Although properly constructed slopes on this site should be grossly stable, the soils will be somewhat erodible. Therefore, runoff water should not be permitted to drain over the edges of slopes unless that water is confined to properly designed and constructed drainage facilities. Erosion-resistant vegetation should be maintained on the face of all slopes.

Typically, soils along the top portion of a fill slope face will creep laterally. CTE recommends against building distress-sensitive hardscape improvements within five feet of slope crests, and against using thickened edges in this area.

6.14 Controlled Low Strength Materials (CLSM)

Controlled Low Strength Materials (CLSM) may be used in deepened footing excavation areas, building pads, and/or adjacent to retaining walls or other structures, provided the appropriate following recommendations are also incorporated. Minimum overexcavation depths recommended herein beneath slabs, flatwork, and other areas may be applicable beneath CLSM if/where CLSM is to be used, and excavation bottoms should be observed by CTE prior to placement of CLSM. Prior to CLSM placement, the excavation should be free of debris, loose soil materials, and water. Once specific areas to utilize CLSM have been determined, CTE should review the locations to determine if additional recommendations are appropriate.

CLSM should consist of a minimum three-sack cement/sand slurry with a minimum 28-day compressive strength of 100 psi (or equal to or greater than the maximum allowable short term soil bearing pressure provided herein, whichever is higher) as determined by ASTM D4832. If re-excavation is anticipated, the compressive strength of CLSM should generally be limited to a maximum of 150 psi per ACI 229R-99. Where re-excavation is required, two-sack cement/sand slurry may be used to help limit the compressive strength. The allowable soils bearing pressure and coefficient of friction provided herein should still govern foundation design. CLSM may not be used in lieu of structural concrete where required by the structural engineer.

6.15 Plan Review

CTE should be authorized to review the project grading and foundation plans prior to commencement of earthwork in order to provide additional recommendations, if necessary.

6.16 Construction Observation

The recommendations provided in this report are based on preliminary design information for the proposed construction and the subsurface conditions observed in the soil borings. The interpolated subsurface conditions should be confirmed by CTE during construction with respect to anticipated conditions. Upon completion of precise grading, if necessary, soil samples will be collected to evaluate as-built Expansion Index. Foundation recommendations may be revised upon completion of grading, and as-built laboratory tests results. Additionally, soil samples should be taken in pavement subgrade areas upon rough grading to refine pavement recommendations as necessary.

Recommendations provided in this report are based on the understanding and assumption that CTE will provide the observation and testing services for the project. All earthwork should be observed and tested in accordance with recommendations contained within this report. CTE should evaluate footing excavations before reinforcing steel placement.

7.0 LIMITATIONS OF INVESTIGATION

The field evaluation, laboratory testing and geotechnical analysis presented in this report have been conducted according to current engineering practice and the standard of care exercised by reputable geotechnical consultants performing similar tasks in this area. No other warranty, expressed or implied, is made regarding the conclusions, recommendations and opinions expressed in this report. Variations may exist and conditions not observed or described in this report may be encountered during construction. This report is prepared for the project as described. It is not prepared for any other property or party.

The recommendations provided herein have been developed in order to reduce the post-construction movement of site improvements related to soil settlement and expansion. However, even with the design and construction recommendations presented herein, some post-construction movement and associated distress may occur.

Page 37

The findings of this report are valid as of the present date. However, changes in the conditions of a property can occur with the passage of time, whether they are due to natural processes or the works of man on this or adjacent properties. In addition, changes in applicable or appropriate standards may occur, whether they result from legislation or the broadening of knowledge. Accordingly, the findings of this report may be invalidated wholly or partially by changes outside CTE's involvement. Therefore, this report is subject to review and should not be relied upon after a period of three years.

CTE's conclusions and recommendations are based on an analysis of the observed conditions. If conditions different from those described in this report are encountered, CTE should be notified and additional recommendations, if required, will be provided subject to CTE remaining as authorized geotechnical consultant of record. This report is for use of the project as described. It should not be utilized for any other project.

Preliminary Geotechnical Investigation Proposed Jefferson Middle School Modernization 823 Acacia Avenue, Oceanside, California January 13, 2021 Page 38

CTE appreciates this opportunity to be of service on this project. If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Respectfully submitted,

CONSTRUCTION TESTING & ENGINEERING, INC.

1

Dan T. Math, GE #2665 Principal Geotechnical Engineer

Aaron J. Beeby, CEG #2603 Senior Engineering Geologist

DTM/JFL/AJB/CJK:ach

Jy 7. Lyne

Jay F. Lynch, CEG #1890 Principal Engineering Geologist

C.L

Colm J. Kenny, RCE #84406 Senior Engineer

DISTANCE (FEET) CROSS SECTION A-A'

LEGEND

- QUATERNARY PREVIOUSLY PLACED FILL Qppf
- Qop QUATERNARY OLD PARALIC DEPOSITS
- Tso TERTIARY SAN ONOFRE BRECCIA
- APPROXIMATE GEOLOGIC CONTACT

E-E' B-11 — Existing Structure — A	\' 200
TD=2.5'	200 180 160 140 120 100 80 60 40 20
<u>1000</u> 1050 1100 1150 1200	0
ROSS SECTION A-A' TION AT JEFFERSON MIDDLE SCHOOL 823 ACACIA AVENUE OCEANSIDE, CALIFORNIA	$\begin{array}{rcl} & \text{CTE JOB NO:} \\ & 10-15771G \\ \hline & \text{SCALE:} \\ & 1^{"} &= 100' \\ \hline & \text{DATE:} \\ & 12/20 \end{array} \begin{array}{c} & \text{FIGURE:} \\ & 2A \end{array}$

- QUATERNARY PREVIOUSLY PLACED FILL Qppf
- Qop QUATERNARY OLD PARALIC DEPOSITS
- Tso TERTIARY SAN ONOFRE BRECCIA
- APPROXIMATE GEOLOGIC CONTACT

						- 20)()		
						- 19	90		
_						— 18	30		
				_		- 17	70		
			+			- 16	60		
						- 15	50		
							0		
						- 13	30		
						- 12	20		
							0		
						- 10)()		
	\rightarrow					90)		
+						- 80)		
					+	- 70)		
						- 60)		
						- 50)		
						- 40)		
						- 30)		
						- 20	J		
						10)		
		~							
.0SS	S SE	ECTI	ON	B-B	,		ľ	CTE JOB NO: 10-1	.5771G
1'ION 82	AT J 3 AC4	EFFER ACIA	SON VENI	MIDDLE UE	SC	HOOL	ļ	1" DATE:	= 50'
0ČĒ	ANSIL	DE, CÂ	LIFO	RNIA				12/20	2B

B'

Qppf QUATERNARY PREVIOUSLY PLACED FILL

Qop QUATERNARY OLD PARALIC DEPOSITS

Tso TERTIARY SAN ONOFRE BRECCIA

APPROXIMATE GEOLOGIC CONTACT

COSS SECTION C-C'	CTE JOB NO: 10-15	5771G
TION AT JEFFERSON MIDDLE SCHOOL	1" = 40'	
823 ACACIA AVENUE	DATE:	FIGURE:
UCEANSIDE, CALIFURNIA	12/20	≈L

Qppf QUATERNARY PREVIOUSLY PLACED FILL

- Tso TERTIARY SAN ONOFRE BRECCIA
- APPROXIMATE GEOLOGIC CONTACT

OSS SECTION D-D'	CTE JOB NO: 10-15771G
TION AT JEFFERSON MIDDLE SCHOOL	1" = 30'
OCEANSIDE, CALIFORNIA	12/20 FIGURE: 2D

- Qppf QUATERNARY PREVIOUSLY PLACED FILL
- Qop QUATERNARY OLD PARALIC DEPOSITS
- Tso TERTIARY SAN ONOFRE BRECCIA
- APPROXIMATE GEOLOGIC CONTACT

APPENDIX A

REFERENCES

CITED REFERENCES

- 1. American Society for Civil Engineers, 2016, "Minimum Design Loads for Buildings and Other Structures," ASCE/SEI 7-16.
- ASTM, 2002, "Test Method for Laboratory Compaction Characteristics of Soil Using Modified Effort," Volume 04.08
- 3. California Building Code, 2019, "California Code of Regulations, Title 24, Part 2, Volume 2 of 2," California Building Standards Commission, published by ICBO, June.
- 4. California Division of Mines and Geology, CD 2000-003 "Digital Images of Official Maps of Alquist-Priolo Earthquake Fault Zones of California, Southern Region," compiled by Martin and Ross.
- 5. California Emergency Management Agency/California Geological Survey, "Tsunami Inundation Maps for Emergency Planning."
- 6. FEMA, 2012, Flood Insurance Rate Map, Panel 0753 of 2375 Map Number 06073C0753J, San Diego County, California and Incorporated Areas.
- 7. Hart, Earl W., Revised 1994, Revised 2018, "Fault-Rupture Hazard Zones in California, Alquist Priolo, Special Studies Zones Act of 1972," California Division of Mines and Geology, Special Publication 42.
- 8. Jennings, Charles W., 1994, "Fault Activity Map of California and Adjacent Areas" with Locations and Ages of Recent Volcanic Eruptions.
- 9. Kennedy, M.P. and Tan, S.S., 2007, "Geologic Map of the Oceanside 30' x 60' Quadrangle, California", California Geological Survey, Map No. 2.
- 10. McCulloch, D.S., 1985, "Evaluating Tsunami Potential" *in* Ziony, J.I., ed., Evaluating Earthquake Hazards in the Los Angeles Region An Earth-Science Perspective, U.S. Geological Survey Professional Paper 1360.
- 11. Reichle, M., Bodin, P., and Brune, J., 1985, The June 1985 San Diego Bay Earthquake swarm [abs.]: EOS, v. 66, no. 46, p.952.
- 12. San Diego, County of, February 2016, "Storm Water Design Manual" Appendix D, Approved Infiltration Rate Assessment Methods for Selection of Storm Water BMPs.
- Seed, H.B., and R.V. Whitman, 1970, "Design of Earth Retaining Structures for Dynamic Loads," in Proceedings, ASCE Specialty Conference on Lateral Stresses in the Ground and Design of Earth-Retaining Structures, pp. 103-147, Ithaca, New York: Cornell University.

- 14. Tan, S. S., and Giffen, D. G., 1995, "Landslide Hazards in the Northern Part of the San Diego Metropolitan Area, San Diego County, California: California Department of Conservation, Division of Mines and Geology, Open-File Report 95-04.
- 15. Wood, J.H. 1973, Earthquake-Induced Soil Pressures on Structures, Report EERL 73-05. Pasadena: California Institute of Technology.

APPENDIX B

EXPLORATION LOGS

CTEINC. Construction Testing & Engineering, Inc.

1441 Montiel Rd Ste 115, Escondido, CA 92026 Ph (760) 746-4955

		DEF	INITION	OFTERMS						
PRI	MARY DIVISIONS	8	SYMBOLS	SECONDAR	Y DIVISIONS					
	GRAVELS	CLEAN	GW SO	WELL GRADED GRAVELS,	GRAVEL-SAND MIXTU	JRES				
A N	MORE THAN HALF OF	GRAVELS < 5% FINES	😽 GP 😽	POORLY GRADED GRAVELS	DR GRAVEL SAND MIX	(TURES,				
SOIL SOF RTH ZE ZE	COARSE FRACTION IS		GM	SILTY GRAVELS, GRAVE	L-SAND-SILT MIXTUR	ES,				
HALF HALF RGEI RGEI	LARGER THAN NO. 4 SIEVE	WITH FINES		NON-PLA CLAYEY GRAVELS, GRAV	EL-SAND-CLAY MIXTU	JRES,				
RAIN AN H S LAF SIEV				PLASTI WELL GRADED SANDS. GRA	C FINES /ELLY SANDS. LITTLE	ORNO				
E GI E TH AL IS 200	SANDS MORE THAN	CLEAN SANDS	SW							
ARS AORE FERI NO.	HALF OF	< 5% FINES	SP	POORLY GRADED SANDS, GI	INES	LE OR				
CO MAT	FRACTION IS	SANDS	SM	SILTY SANDS, SAND-SILT MI	XTURES, NON-PLASTIC	C FINES				
	NO. 4 SIEVE	WITH FINES	SC //	CLAYEY SANDS, SAND-CLA	Y MIXTURES, PLASTIC	FINES				
			ML II	INORGANIC SILTS, VERY FIN OR CLAYEY FINE SANDS, SLIC	E SANDS, ROCK FLOUP SHTLY PLASTIC CLAYI	R, SILTY EY SILTS				
OILS F OF	LIQUID LIM	IT IS			V TO MEDIUM PLASTI	CITY,				
ED S SM/ SIEV	LESS THAI	N 50		ORGANIC SILTS AND ORGAN	C CLAYS OF LOW PLA	STICITY				
AINE HAN LL IS 200 2				INORGANIC SILTS, MICACEC	US OR DIATOMACEOL	JS FINE				
E TI E TI NO.	SILTS AND C	LAYS		SANDY OR SILTY S	DILS, ELASTIC SILTS	4)/0				
AN NAN AN NAN AN NAN NAN NAN NAN NAN NA			СН ///	INORGANIC CLAYSOF HIC	H PLASTICITY, FAT CI	LAYS				
H Z Z H	GREATER IF	1AN 30	OH //	ORGANIC CLAYS OF MED	IUM TO HIGH PLASTIC	XITY,				
HIGH	LY ORGANIC SOILS		PT	PEAT AND OTHER HI	GHLY ORGANIC SOILS	;				
			GRAIN	SIZES						
BOULDERS	COBBLES	GR COARSE		SAND	SILTS AND	CLAYS				
1	2"	3" 3	/4" 4	10 40	200					
CL	EAR SQUARE SIE	VE OPENIN	G	U.S. STANDARD SIEVE SIZE						
ADDITIONAL TESTS (OTHER THAN TEST PIT AND BORING LOG COLUMN HEADINGS)										
MAX-Maximum	MAX-Maximum Dry Density PM-Permeability PP-Pocket Penetrometer									
GS- Grain Size Di	stribution		SG- Specific G	ravity WA-W	ash Analysis					
SE-Sand Equivale	ent		HA- Hydromete	er Analysis DS-Dir	ect Shear					
EI-Expansion Ind	ex		AL-Atterberg L	imits UC- Ur	confined Compressio	on				
CHM- Sulfate and	Chloride		RV-R-Value	MD- M	oisture/Density					
Content, pH,	Resistivity		CN- Consolidat	ion M-Moi	sture					
COR - Corrosivity	/ 		CP- Collapse P	otential SC-Sw	ell Compression					
SD- Sample Distu	rbed		HC- Hydrocolla	apse Ol-Org	anicImpurities					
				a						
					FIGURE:	BL1				

Construction Testing & Engineering, Inc.

1441 Montiel Rd Ste 115, Escondido, CA 92026 Ph (760) 746-4955

PROJECT:				DRILLER: SHEET:	of					
CTE JOB NO:				DRILL METHOD: DRILLI	NG DATE:					
LOGGED BY:				SAMPLE METHOD: ELEVA	TION:					
Depth (Feet) Bulk Sample Driven Type Blows/Foot	Dry Densty (pď) Moisture (%)	U.S.C.S. Symbol	Graphic Log	BORING LEGEND	Laboratory Tests					
-0-										
				 Block or Chunk Sample 						
┠╶ <u>┤</u> ││ │										
┠╶┦┫╵╻┥				- Bulk Sample						
5										
- 3 -										
┣┥║║										
┣┥║║										
				Other shared Devices the Test						
L 」 Ш ◄──				- Standard Penetration Test						
┠┤╽╽╺──				- Modified Split-Barrel Drive Sampler (Cal Sampler)						
┃ │ ₩┦ ◀╶┼╴				 Thin Walled Army Corp. of Engineers Sample 						
-15-										
┣┥║║		•		- Groundwater Table						
	_									
			F		•					
				— Soil Type or Classification Change						
-20										
┣┥║║				? ?						
				Formation Change [(Approximate boundaries queried (?)]						
		"SM"		Quotes are placed around classifications where the soils						
-25-				exist in situ as degrock						
$\mathbf{F} \rightarrow [1]$										
				FIC	SURE: BL2					

	CTEINC. Construction Testing & Engineering, Inc. 1441 Montiel Rd Ste 115, Escondido, CA 92026 Ph (760) 746-4955											
PROJECT: JEFFERSON M.S. MODERNIZATION CTE JOB NO: 10-15771G LOGGED BY: AJB					ZATION	DRILLER: DRILL METHOD: SAMPLE METHOD:	BAJA EXPLORATION HOLLOW-STEM AUGER RING, SPT and BULK	SHEET: DRILLI ELEVA	1 NG DATE: FION:	of 1 12/9/2020 ~161 FEET		
Depth (Feet) Bulk Sample Driven Type Blows/6"	Dry Density (pcf)	Moisture (%)	U.S.C.S. Symbol	Graphic Log		BORI	NG: B-1		Labora	atory Tests		
			,	Ĩ		DESC	CRIPTION					
-o			SC		Asphalt: 0-1" QUATERNA Loose to medi fine to mediur	RY PREVIOUSL um dense, slightly n grained SAND w	Y PLACED FILL: moist, grayish brown, clayey ith gravel.					
			"ML"		TERTIARY S Hard, slightly to coarse grain	SAN ONOFRE BI moist, olive brown led sandy SILT wit	RECCIA: breccia that excavates to fine h angular gravel.	2				
50/6"										GS		
			"SM"		Very dense, sl SANDSTONI	ightly moist, light b 3.	prown, silty fine to coarse gra	ined				
-10- 7 25			"ML"		Hard, slightly to coarse grain	moist, olive brown and sandy SILT wit	, breccia that excavates to fin h angular gravel.	e				
									М	D, DS		
					Total Depth: 1 No Groundwa	1' ter Encountered						
 -1 5 -												
┠┥║												
┠┥║												
-20-												
$\mathbf{F} \rightarrow $												
$\mathbf{F} \rightarrow $												
┠┤││												
-25												
					I					B-1		

	СТ	INC	Cons	truction Testi	ng & Engineerin scondido, CA 92026 Ph	g, Inc. (760) 746-4	955
PROJECT: CTE JOB NO: LOGGED BY:	JEFFERSON M. 10-15771G AJB	S. MODERNI	IZATION	DRILLER: DRILL METHOD: SAMPLE METHOD:	BAJA EXPLORATION HOLLOW-STEM AUGER RING, SPT and BULK	SHEET: DRILLING ELEVATI	1 of 1 G DATE: 12/9/2020 ON: ~160 FEET
Depth (Feet) Bulk Sample Driven Type Blows/6"	Dry Density (pcf) Moisture (%)	U.S.C.S. Symbol Graphic Log		BORI	NG: B-2		Laboratory Tests
				DESC	RIPTION		
		SC	Asphalt: 0-2 Base Mater OUATERN Loose to me fine to medi	2.5" al: 2.5-10" W ARY PREVIOUSL Y edium dense, slightly 1 um grained SAND wi	Y PLACED FILL: noist, brown, clayey th gravel		MAX, EI, DS
19 36 							MD, DS
-10^{-1} 3^{9} 8^{1} 14^{-1}	-	"SM"	TERTIAR Very dense, grained SA	<u>Y SAN ONOFRE BR</u> slightly moist, light g NDSTONE	RECCIA: ray, silty fine to coarse		
 -1 5- Z 50/6" 							
 -20- Ⅲ _{50/6"}							
- 25							B-2

	CTEINC. Construction Testing & Engineering, Inc. 1441 Montiel Rd Ste 115, Escondido, CA 92026 Ph (760) 746-4955										
PROJECT: CTE JOB NO: LOGGED BY:	JEFFERSON M.S. 1 10-15771G AJB	MODERNIZ	CATION DRILLER: BAJA EXPLORATION S DRILL METHOD: HOLLOW-STEM AUGER I SAMPLE METHOD: RING, SPT and BULK F	SHEET: DRILLING DAT ELEVATION:	1 of 1 E: 12/9/2020 ~160 FEET						
Depth (Feet) Bulk Sample Driven Type Blows/6"	Dry Density (pcf) Moisture (%)	U.S.C.S. Symbol Graphic Log	BORING: B-2	Lat	ooratory Tests						
		_	DESCRIPTION								
- 25 	"S	M"	Very dense, slightly moist, light gray, silty fine to coarse grained SANDSTONE.								
			Total Depth: 30.4' (Refusal in very dense Breccia) No Groundwater Encountered Backfilled with bentonite/ cement mix								
					B-2						

			C	Ţ		N	Cons 	struction Tes	ting & Engineeri Escondido, CA 92026 P	ng, Inc. h (760) 746	-4955	
PROJECT: JEFFERSON M.S. MODERI CTE JOB NO: 10-15771G LOGGED BY: DJT					1.S. MOI	DERNI	ZATION	DRILLER: DRILL METHOD: SAMPLE METHOD:	BAJA EXPLORATION HOLLOW-STEM AUGER RING, SPT and BULK	SHEET DRILLI ELEVA	NG DATE TION:	l of 1 :: 12/9/2020 ~161 FEET
Depth (Feet) Bulk Sample	Driven Type	Blows/6"	Dry Density (pcf)	Moisture (%) U.S.C.S. Symbol Graphic Log				BOR	ING: B-3		Labo	pratory Tests
-0 -5		17 50/3"			"ML"		Asphalt: 0- TERTIAR Very dense excavates to	3" <u>Y SAN ONOFRE H</u> , slightly moist, olive o fine to course grain	BRECCIA: brown to light gray, breco and sandy SILT to silty SA	cia that ND		
		30/3					Total Deptl No Ground	h: 6' Water Encountered				
			-			-	•					B-3

CTEINC: Construction Testing & Engineering, Inc. 1441 Montiel Rd Ste 115, Escondido, CA 92026 Ph (760) 746-4955										
PROJECT: JEFFEI CTE JOB NO: 10-157 LOGGED BY: DJT	PROJECT: JEFFERSON M.S. MODERNIZATION DRILLER: BAJA EXPLORATION SHEET: CTE JOB NO: 10-15771G DRILL METHOD: HOLLOW-STEM AUGER DRILLING DAT LOGGED BY: DJT SAMPLE METHOD: RING, SPT and BULK ELEVATION:									
Depth (Feet) Bulk Sample Driven Type Blows/6" Dry Density (pcf)	Moisture (%) U.S.C.S. Symbol	Graphic Log	BORING: B-4	Laboratory Tests						
	"SM" "SM"		DESCRIPTION OUATERNARY PREVIOUSLY PLACED FILL: Medium dense, slightly moist, light reddish brown, silty fine grained SAND. TERTIARY SAN ONOFRE BRECCIA: Very dense, slightly moist, olive brown breccia that excavates to silty fine grained SANDSTONE with gravel							
			Total Depth: 7' (Refusal in very dense breccia) No Groundwater Encountered							
-25				B-4						

	CT	EI	C. Con	Struction Testin Montiel Rd Ste 115, Es	ng & Engineering	3, Inc. 760) 746-4	955
PROJECT: CTE JOB NO: LOGGED BY:	JEFFERSON M 10-15771G DJT	M.S. MODEF	RNIZATION	DRILLER: DRILL METHOD: SAMPLE METHOD:	BAJA EXPLORATION HOLLOW-STEM AUGER RING, SPT and BULK	SHEET: DRILLING ELEVATI	1 of 1 3 DATE: 12/10/2020 ON: ~178 FEET
Depth (Feet) Bulk Sample Driven Type Blows/6"	Dry Density (pcf) Moisture (%)	U.S.C.S. Symbol	Oraphite Log	BORI	NG: B-5		Laboratory Tests
				DESC	RIPTION		
		"SM"	Asphalt: 0 OUATER Loose to r fine to me	-3" RNARY PREVIOUSLY nedium dense or stiff, sl dium grained SAND/sar	Y PLACED FILL: lightly moist, dark brown, cl ndy CLAY.	ayey	EI, CHM
$\begin{bmatrix} -1 & 2 \\ 21 \\ -1 & -1 \\ -10 & Z \end{bmatrix} = \begin{bmatrix} 31 \\ 50/5' \end{bmatrix}$							MD, DS
 - 15- FT 11		"SM"	TERTIA Very dens silty fine g	RY SAN ONOFRE BR e, slightly moist, olive b grained SANDSTONE v	ECCIA: brown breccia that excavates with gravel.	s to	
- $ -$,						DS
-20-			Total Dep No Groun	th: 19.5' dwater Encountered			
-25						I	B-5

				C	Ţ	E	N	Cons	truction Tes	sting & Engineering Escondido, CA 92026 Ph (g, Inc. 760) 746	-4955	
PRO CTE LOG	JEC JOB GEE	T: 5 NO 9 BY	:	JEFFER 10-1577 DJT	SON M '1G	1.S. MOI	DERN	ZATION DRILLER: BAJA EXPLORATION DRILL METHOD: HOLLOW-STEM AUGER SAMPLE METHOD: RING, SPT and BULK			SHEET: DRILLI ELEVA	: 1 NG DATE: TION:	of 1 12/10/2020 ~163 FEET
Depth (Feet)	Bulk Sample	Driven Type	Blows/6"	Dry Density (pcf)	Moisture (%)	U.S.C.S. Symbol	Graphic Log		BORING: B-6				
									DE	SCRIPTION			
-0- 						SC		OUATERN Loose to me SAND with	ARY PREVIOUS edium dense, browr trace gravel.	SLY PLACED FILL: n, clayey fine to medium graine	d		
- 5 - - 10	-		44 50/2" 50/4"			"SM"		TERTIAR Very dense, fine to medi	Y SAN ONOFRE slightly moist, gra ium grained SAND	BRECCIA: y breccia that excavates to silty with gravel.	,		
 - 15 -			30/4					Total Depth No Ground	a: 11.5 (Refusal in water Encountered	very dense breccia)			
<u> </u>							I					<u> </u>	B-6
1													

INCODE JEFFENSION MS. MODERNIZATION DRUL FR: BAAR EXPLORATION BIRLI FR: 1 of 1 1000 CFE LOR NO. 04-16770 DRUL MERHOD. NING, SPT and BULX NILLING NOT: 129/2000 1000 CFE DB NY. DT SAMPLE METHOD. RING, SPT and BULX ELEVATION: -143 FEET 1000 CFE DB NY. 000 Status Sample METHOD. RING, SPT and BULX ELEVATION: -143 FEET 1000 CFE DB NY. 000 Status 000 Status Sample METHOD. RING, SPT and BULX ELEVATION: -143 FEET 1000 CFE DB NY. 000 Status 000 Status 000 Status DESCRIPTION Laboratory Tests 000 Status 000 Status 000 Status 000 Status DESCRIPTION Laboratory Tests 000 Status 000 Status 000 Status 000 Status DESCRIPTION Laboratory Tests 000 Status 000 Status 000 Status DESCRIPTION Laboratory Tests 000 Status 000 Status 000 Status No Status No 100 Status 100 Status<		CTEINC. Construction Testing & Engineering, Inc. 1441 Montiel Rd Ste 115, Escondido, CA 92026 Ph (760) 746-4955											
Image: Second	PROJECT: CTE JOB NO LOGGED BY	:	JEFFER 10-1577 DJT	SON M 1G	I.S. MOI	DERNI	ZATION	ZATION DRILLER: BAJA EXPLORATION SHEET: DRILL METHOD: HOLLOW-STEM AUGER DRILLING SAMPLE METHOD: RING, SPT and BULK ELEVATI				of 1 12/9/2020 ~163 FEET	
0 SM OUATERNARY PROJUNCED FILL: Loose to medium dense, light brown, silty fine to medium grained SAND with gravel. - - -	Depth (Feet) Bulk Sample Driven Type	Blows/6"	Dry Density (pcf)	Moisture (%)	U.S.C.S. Symbol	Graphic Log		BORI	NG: B-7		Labor	atory Tests	
0 SM OUATERNARY PREVIOUSLY PLACED FILL: Loose to medium dense, light brown, silty fine to medium grained SAND with gravel. - - -								DESC	CRIPTION				
	-0				SM		QUATERN Loose to med SAND with §	ARY PREVIOUSL dium dense, light bro gravel.	Y PLACED FILL: wn, silty fine to medium gr	ained			
Total Depth: 5.3 (Refusal in very dense breccia) Total Depth: 5.3 (Refusal in very dense breccia) No Groundwater Encountered	 -5	50/3"			"SM"		TERTIARY Very dense, a to silty fine to	ERTIARY SAN ONOFRE BRECCIA: /ery dense, slightly moist, light olive brown breccia that excavates o silty fine to medium grained SAND with gravel.					
							Total Depth: No Groundw	5.3 (Refusal in very rater Encountered	dense breccia)				
B-7							•					B-7	

				C			N	Con 	Struction Tes	ting & Engineerin	g, Inc. (760) 746	-4955	
PRC CTE LOC	DJEC E JO GGE	CT: B N(D B`	D: Y:	JEFFEF 10-157 DJT	RSON N 71G	4.S. MO	DERN	VIZATION DRILLER: BAJA EXPLORATION SHE DRILL METHOD: HOLLOW-STEM AUGER DRI SAMPLE METHOD: RING, SPT and BULK ELE				: 1 NG DATE: TION:	of 1 12/10/2020 ~176 FEET
Depth (Feet)	Bulk Sample	Driven Type	Blows/6"	Dry Density (pcf)	Moisture (%)	U.S.C.S. Symbol	Graphic Log		BOR	ING: B-8		Labor	atory Tests
									DES	CRIPTION		1	
-0. 			5 2 3 4 5 8			SC CL		Asphalt: 0 Base mate <u>QUATER</u> Loose to r <u>grained S</u> . Stiff, mois	P-6" erial: 6-12" EXARY PREVIOUS medium dense, moist, <u>AND.</u> st, brown, fine to medi	LY PLACED FILL: brown, clayey fine to mediur um grained sandy CLAY.	n		
- 15 - 15 26 26 25			16 33 50/2" 27 50/3"			"SM" "SM"		QUATER Very dens grained SA TERTIA Very dens to silty fin Total Dep No Groun	RNARY OLD PARA se, slightly moist, redd ANDSTONE, oxidize RY SAN ONOFRE E se, slightly moist, redd te to medium grained S oth: 19.3' idwater Encountered	LIC DEPOSITS: ish brown, silty fine to mediu d, massive. RECCIA: ish brown breccia that excav SAND with gravel.	ım ates		
Г													B-8

	CT	EIN	C. Con:	Struction Testin	ng & Engineering	g, Inc. 760) 746-49	55
PROJECT: CTE JOB NO: LOGGED BY:	JEFFERSON M 10-15771G DJT	1.S. MODER	NIZATION	DRILLER: DRILL METHOD: SAMPLE METHOD:	BAJA EXPLORATION HOLLOW-STEM AUGER RING, SPT and BULK	SHEET: DRILLING ELEVATIO	1 of 1 DATE: 12/10/2020 N: ~179 FEET
Depth (Feet) Bulk Sample Driven Type Blows/6"	Dry Density (pcf) Moisture (%)	U.S.C.S. Symbol Graphic Log		BORI	NG: B-9		Laboratory Tests
				DESC	RIPTION		
		SC CL	Asphalt: 0 Base mate QUATER Loose to n SAND. Stiff, mois	-6" rial: 6-12" NARY PREVIOUSLY nedium dense, moist, da it, brown, fine to medium	Y PLACED FILL: ark brown, fine to medium g m grained sandy CLAY.	rained	RV
			Abundant	trash			
$\begin{bmatrix} -10^{-} \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$							
-15- 10 14 29							
-20- -20-		"SM"	TERTIAL	RY SAN ONOFRE BR	<u>RECCIA:</u>	tas	
25-			to silty find Total Dept No Ground Backfilled	e, sugnuy moist, reddisl e to medium grained SA th: 21.5' dwater Encountered with Bentonite/Concre	te Mix		R-9

CTEINC. Construction Testing & Engineering, Inc. 1441 Montiel Rd Ste 115, Escondido, CA 92026 Ph (760) 746-4955						
PROJECT: CTE JOB NO: LOGGED BY:	JEFFERSON M.S. MC 10-15771G DJT	DDERNIZATION	DRILLER: DRILL METHOD: SAMPLE METHOD:	BAJA EXPLORATION HOLLOW-STEM AUGER RING, SPT and BULK	SHEET: DRILLINC ELEVATIO	1 of 1 3 DATE: 12/9/2020 DN: ~186 FEET
Depth (Feet) Bulk Sample Driven Type Blows/6"	Dry Density (pcf) Moisture (%) U.S.C.S. Symbol	Graphic Log	BORIN	NG: B-10		Laboratory Tests
	SC CL "SC"	OUATEI Loose to grained S Soft to m sandy CL OUATEI Medium d to medium TERTIA Very den to silty fit	RNARY PREVIOUSL medium dense, moist, da AND with roots and gra edium stiff, moist, reddis AY with fine gravel. RNARY OLD PARAL dense, slightly moist, lig n grained SAND. RY SAN ONOFRE BR se, slightly moist, greeni se to coarse grained SAN	<u>AIPTION</u> <u>Y PLACED FILL:</u> ark brown, clayey fine to me <u>yel.</u> sh brown, fine to coarse gra <u>IC DEPOSITS:</u> ht reddish brown, clayey fin <u>RECCIA:</u> sh brown breccia that excav ND with gravel	edium ined ee vates	
 - 10- 		Total Dep No Grour	oth: 2.9' (Refusal in very ndwater Encountered	dense breccia)		
15- - 20-						
 - 25-						B-10

CTEINC. Construction Testing & Engineering, Inc. 1441 Montiel Rd Ste 115, Escondido, CA 92026 Ph (760) 746-4955							
PROJECT: CTE JOB NO: LOGGED BY:	JEFFERSON M.S. MC 10-15771G DJT	DERNIZATION	DRILLER: DRILL METHOD: SAMPLE METHOD:	BAJA EXPLORATION HOLLOW-STEM AUGER RING, SPT and BULK	SHEET: DRILLING I ELEVATIO	1 of 1 DATE: 12/9/2020 N: ~191 FEET	
Depth (Feet) Bulk Sample Driven Type Blows/6"	Dry Density (pcf) Moisture (%) U.S.C.S. Symbol	Graphic Log	BORING: B-11			Laboratory Tests	
	SC "SC" "SM"	OUATEI Loose to r grained S OUATEI Medium of SANDST TERTIA Very densito silty fir Total Dep No Grour	DESC RNARY PREVIOUSLY medium dense, moist, da AND with gravel and ro RNARY OLD PARALY dense, moist, reddish bro ONE, oxidized. RY SAN ONOFRE BH se, slightly moist, greeni te to coarse grained SAN oth: 2.5' (Refusal in very dwater Encountered	RIPTION Y PLACED FILL: ark brown, clayey fine to metods. IC DEPOSITS: own, fine to medium grained RECCIA: sh brown breccia that excav ND with gravel. * dense breccia)	edium 1 //ates		
-25						B-11	

	CT	EIN	Con:	Struction Testi Montiel Rd Ste 115, Es	ng & Engineering	g, Inc. 760) 746-	4955	
PROJECT: CTE JOB NO: LOGGED BY:	JEFFERSON M 10-15771G DJT	I.S. MODERN	IZATION	DRILLER: DRILL METHOD: SAMPLE METHOD:	BAJA EXPLORATION HOLLOW-STEM AUGER RING, SPT and BULK	SHEET: DRILLIN ELEVAT	1 NG DATE: TION:	of 1 12/9/2020 ~180 FEET
Depth (Feet) Bulk Sample Driven Type Blows/6"	Dry Density (pcf) Moisture (%)	U.S.C.S. Symbol Graphic Log		BORIN	NG: B-12		Labora	atory Tests
				DESC	RIPTION			
-0		SC/CL "SC/SM"	Asphalt: 0 QUATER Loose to n SAND/ sau QUATER Very dense medium gr	-2.5" NARY PREVIOUSLY nedium dense or stiff, d ndy CLAY. NARY OLD PARALI e, slightly moist, reddis rained SANDSTONE, o	Y PLACED FILL: ark brown, clayey fine grain IC DEPOSITS: h brown, silty to clayey fine oxidized, massive.	to		
-5- $-5 -5 -5 -5 -5 -5 -50/6"$		"SC"	Very dense SANDSTO manganezo	e, slightly moist, reddis ONE, oxidized, massive e nodules	h brown, clayey fine grained e, manganeze nodules.	ī		
-10- 18 								
-15 36 $50/6$ "		"SM"	TERTIAL Very dense fine to med	RY SAN ONOFRE BR e, slightly moist, gray, b dium grained SAND wi	RECCIA: preccia that excavates to silt th gravel.	y		AL
 - 20- 			Total Dept No Ground	th: 17' (Refusal in very dwater Encountered	dense breccia)			
								B-12

APPENDIX C

LABORATORY METHODS AND RESULTS

LABORATORY METHODS AND RESULTS

Laboratory Testing Program

Laboratory tests were performed on representative soil samples to detect their relative engineering properties. Tests were performed following test methods of the American Society for Testing Materials or other accepted standards. The following presents a brief description of the various test methods used.

Classification

Soils were classified visually according to the Unified Soil Classification System. Visual classifications were supplemented by laboratory testing of selected samples according to ASTM D2487. The soil classifications are shown on the Exploration Logs in Appendix B.

In-Place Moisture and Density

To determine the moisture and density of in-place site soils, a representative sample was tested for the moisture and density at time of sampling.

Modified Proctor

Laboratory maximum dry density and optimum moisture content were evaluated according to ASTM D 1557, Method A. A mechanically operated rammer was used during the compaction process.

Expansion Index

Expansion testing was performed on selected samples of the matrix of the on-site soils according to ASTM D 4829.

Particle-Size Analysis

Particle-size analyses were performed on selected representative samples according to ASTM D 422.

Direct Shear

Direct shear tests were performed on either samples direct from the field or on samples recompacted to a specific density. Direct shear testing was performed in accordance with ASTM D 3080. The samples were inundated during shearing to represent adverse field conditions.

Chemical Analysis

Soil materials were collected with sterile sampling equipment and tested for Sulfate and Chloride content, pH, Corrosivity, and Resistivity.

Construction Testing & Engineering, Inc. 1441 Montiel Rd Ste 115, Escondido, CA 92026 Ph (760) 746-4955

EXPANSION INDEX TEST

		ASTM D 4829		
LOCATION	D	EPTH feet)	EXPANSION INDEX	EXPANSION POTENTIAL
B-2		0-5	14	VERY LOW
B-5		0-5	15	VERY LOW
	IN-PLA	CE MOISTURE ANI	D DENSITY	
LOCATION	D	EPTH feet)	% MOISTURE	DRY DENSITY
B-1	· · · · · · · · · · · · · · · · · · ·	10	10.8	125.2
B-5		10	11.6	128.3
B-5		18.5	19.9	110.7
	R	RESISTANCE "R"-VA	ALUE	
LOCATION	D	EPTH feet)	RESULTS	
B-9		0-5	15	
		ATTERBERG LIM	ITS	
LOCATION	DEPTH (feet)	LIQUID LIMIT	PLASTICITY INDEX	CLASSIFICATION
B-12	10	44	20	CL
		SULFATE		
LOCATION	D	ЕРТН	RESULTS	
Docimion		(feet)	ppm	
B-5		0-5	45.2	
		CHLORIDE		
LOCATION	LOCATION DEPTH		RESULTS	
	(feet)	ppm	
B-5		0-5	1.98	
		p.H.		
LOCATION	D	EPTH feet)	RESULTS	
B-5		0-5	7.98	
		RESISTIVITY		
		CALIFORNIA TEST 42	24	
LOCATION	D	EPTH	RESULTS	
	((feet)	ohms-cm	
B-5		0-5	14100	
		MODIFIED PROCT	OR	
LOCATION	ח	EPTH	MAXIMUM DRY DENSITY	OPTIMUM MOISTURE
200111010		feet)	(PCF)	(%)
B-2		0-5	137.2 (RC: 141.9)	9.1 (RC: 7.5)

Construction Testing & Engineering, Inc.

Inspection | Testing | Geotechnical | Environmental & Construction Engineering | Civil Engineering | Surveying

APPENDIX D

STANDARD SPECIFICATIONS FOR GRADING

Section 1 - General

Construction Testing & Engineering, Inc. presents the following standard recommendations for grading and other associated operations on construction projects. These guidelines should be considered a portion of the project specifications. Recommendations contained in the body of the previously presented soils report shall supersede the recommendations and or requirements as specified herein. The project geotechnical consultant shall interpret disputes arising out of interpretation of the recommendations contained in the soils report or specifications contained herein.

Section 2 - Responsibilities of Project Personnel

The <u>geotechnical consultant</u> should provide observation and testing services sufficient to general conformance with project specifications and standard grading practices. The geotechnical consultant should report any deviations to the client or his authorized representative.

The <u>Client</u> should be chiefly responsible for all aspects of the project. He or his authorized representative has the responsibility of reviewing the findings and recommendations of the geotechnical consultant. He shall authorize or cause to have authorized the Contractor and/or other consultants to perform work and/or provide services. During grading the Client or his authorized representative should remain on-site or should remain reasonably accessible to all concerned parties in order to make decisions necessary to maintain the flow of the project.

The Contractor is responsible for the safety of the project and satisfactory completion of all grading and other associated operations on construction projects, including, but not limited to, earth work in accordance with the project plans, specifications and controlling agency requirements.

Section 3 - Preconstruction Meeting

A preconstruction site meeting should be arranged by the owner and/or client and should include the grading contractor, design engineer, geotechnical consultant, owner's representative and representatives of the appropriate governing authorities.

Section 4 - Site Preparation

The client or contractor should obtain the required approvals from the controlling authorities for the project prior, during and/or after demolition, site preparation and removals, etc. The appropriate approvals should be obtained prior to proceeding with grading operations.

Clearing and grubbing should consist of the removal of vegetation such as brush, grass, woods, stumps, trees, root of trees and otherwise deleterious natural materials from the areas to be graded. Clearing and grubbing should extend to the outside of all proposed excavation and fill areas.

Demolition should include removal of buildings, structures, foundations, reservoirs, utilities (including underground pipelines, septic tanks, leach fields, seepage pits, cisterns, mining shafts, tunnels, etc.) and other man-made surface and subsurface improvements from the areas to be graded. Demolition of utilities should include proper capping and/or rerouting pipelines at the project perimeter and cutoff and capping of wells in accordance with the requirements of the governing authorities and the recommendations of the geotechnical consultant at the time of demolition.

Trees, plants or man-made improvements not planned to be removed or demolished should be protected by the contractor from damage or injury.

Debris generated during clearing, grubbing and/or demolition operations should be wasted from areas to be graded and disposed off-site. Clearing, grubbing and demolition operations should be performed under the observation of the geotechnical consultant.

Section 5 - Site Protection

Protection of the site during the period of grading should be the responsibility of the contractor. Unless other provisions are made in writing and agreed upon among the concerned parties, completion of a portion of the project should not be considered to preclude that portion or adjacent areas from the requirements for site protection until such time as the entire project is complete as identified by the geotechnical consultant, the client and the regulating agencies.

Precautions should be taken during the performance of site clearing, excavations and grading to protect the work site from flooding, ponding or inundation by poor or improper surface drainage. Temporary provisions should be made during the rainy season to adequately direct surface drainage away from and off the work site. Where low areas cannot be avoided, pumps should be kept on hand to continually remove water during periods of rainfall.

Rain related damage should be considered to include, but may not be limited to, erosion, silting, saturation, swelling, structural distress and other adverse conditions as determined by the geotechnical consultant. Soil adversely affected should be classified as unsuitable materials and should be subject to overexcavation and replacement with compacted fill or other remedial grading as recommended by the geotechnical consultant.

STANDARD SPECIFICATIONS OF GRADING Page 2 of 26

The contractor should be responsible for the stability of all temporary excavations. Recommendations by the geotechnical consultant pertaining to temporary excavations (e.g., backcuts) are made in consideration of stability of the completed project and, therefore, should not be considered to preclude the responsibilities of the contractor. Recommendations by the geotechnical consultant should not be considered to preclude requirements that are more restrictive by the regulating agencies. The contractor should provide during periods of extensive rainfall plastic sheeting to prevent unprotected slopes from becoming saturated and unstable. When deemed appropriate by the geotechnical consultant or governing agencies the contractor shall install checkdams, desilting basins, sand bags or other drainage control measures.

In relatively level areas and/or slope areas, where saturated soil and/or erosion gullies exist to depths of greater than 1.0 foot; they should be overexcavated and replaced as compacted fill in accordance with the applicable specifications. Where affected materials exist to depths of 1.0 foot or less below proposed finished grade, remedial grading by moisture conditioning in-place, followed by thorough recompaction in accordance with the applicable grading guidelines herein may be attempted. If the desired results are not achieved, all affected materials should be overexcavated and replaced as compacted fill in accordance with the slope repair recommendations herein. If field conditions dictate, the geotechnical consultant may recommend other slope repair procedures.

Section 6 - Excavations

6.1 Unsuitable Materials

Materials that are unsuitable should be excavated under observation and recommendations of the geotechnical consultant. Unsuitable materials include, but may not be limited to, dry, loose, soft, wet, organic compressible natural soils and fractured, weathered, soft bedrock and nonengineered or otherwise deleterious fill materials.

Material identified by the geotechnical consultant as unsatisfactory due to its moisture conditions should be overexcavated; moisture conditioned as needed, to a uniform at or above optimum moisture condition before placement as compacted fill.

If during the course of grading adverse geotechnical conditions are exposed which were not anticipated in the preliminary soil report as determined by the geotechnical consultant additional exploration, analysis, and treatment of these problems may be recommended.

6.2 Cut Slopes

Unless otherwise recommended by the geotechnical consultant and approved by the regulating agencies, permanent cut slopes should not be steeper than 2:1 (horizontal: vertical).

The geotechnical consultant should observe cut slope excavation and if these excavations expose loose cohesionless, significantly fractured or otherwise unsuitable material, the materials should be overexcavated and replaced with a compacted stabilization fill. If encountered specific cross section details should be obtained from the Geotechnical Consultant.

When extensive cut slopes are excavated or these cut slopes are made in the direction of the prevailing drainage, a non-erodible diversion swale (brow ditch) should be provided at the top of the slope.

6.3 Pad Areas

All lot pad areas, including side yard terrace containing both cut and fill materials, transitions, located less than 3 feet deep should be overexcavated to a depth of 3 feet and replaced with a uniform compacted fill blanket of 3 feet. Actual depth of overexcavation may vary and should be delineated by the geotechnical consultant during grading, especially where deep or drastic transitions are present.

For pad areas created above cut or natural slopes, positive drainage should be established away from the top-of-slope. This may be accomplished utilizing a berm drainage swale and/or an appropriate pad gradient. A gradient in soil areas away from the top-of-slopes of 2 percent or greater is recommended.

Section 7 - Compacted Fill

All fill materials should have fill quality, placement, conditioning and compaction as specified below or as approved by the geotechnical consultant.

7.1 Fill Material Quality

Excavated on-site or import materials which are acceptable to the geotechnical consultant may be utilized as compacted fill, provided trash, vegetation and other deleterious materials are removed prior to placement. All import materials anticipated for use on-site should be sampled tested and approved prior to and placement is in conformance with the requirements outlined.

> STANDARD SPECIFICATIONS OF GRADING Page 4 of 26

Rocks 12 inches in maximum and smaller may be utilized within compacted fill provided sufficient fill material is placed and thoroughly compacted over and around all rock to effectively fill rock voids. The amount of rock should not exceed 40 percent by dry weight passing the 3/4-inch sieve. The geotechnical consultant may vary those requirements as field conditions dictate.

Where rocks greater than 12 inches but less than four feet of maximum dimension are generated during grading, or otherwise desired to be placed within an engineered fill, special handling in accordance with the recommendations below. Rocks greater than four feet should be broken down or disposed off-site.

7.2 Placement of Fill

Prior to placement of fill material, the geotechnical consultant should observe and approve the area to receive fill. After observation and approval, the exposed ground surface should be scarified to a depth of 6 to 8 inches. The scarified material should be conditioned (i.e. moisture added or air dried by continued discing) to achieve a moisture content at or slightly above optimum moisture conditions and compacted to a minimum of 90 percent of the maximum density or as otherwise recommended in the soils report or by appropriate government agencies.

Compacted fill should then be placed in thin horizontal lifts not exceeding eight inches in loose thickness prior to compaction. Each lift should be moisture conditioned as needed, thoroughly blended to achieve a consistent moisture content at or slightly above optimum and thoroughly compacted by mechanical methods to a minimum of 90 percent of laboratory maximum dry density. Each lift should be treated in a like manner until the desired finished grades are achieved.

The contractor should have suitable and sufficient mechanical compaction equipment and watering apparatus on the job site to handle the amount of fill being placed in consideration of moisture retention properties of the materials and weather conditions.

When placing fill in horizontal lifts adjacent to areas sloping steeper than 5:1 (horizontal: vertical), horizontal keys and vertical benches should be excavated into the adjacent slope area. Keying and benching should be sufficient to provide at least six-foot wide benches and a minimum of four feet of vertical bench height within the firm natural ground, firm bedrock or engineered compacted fill. No compacted fill should be placed in an area after keying and benching until the geotechnical consultant has reviewed the area. Material generated by the benching operation should be moved sufficiently away from

STANDARD SPECIFICATIONS OF GRADING Page 5 of 26
the bench area to allow for the recommended review of the horizontal bench prior to placement of fill.

Within a single fill area where grading procedures dictate two or more separate fills, temporary slopes (false slopes) may be created. When placing fill adjacent to a false slope, benching should be conducted in the same manner as above described. At least a 3-foot vertical bench should be established within the firm core of adjacent approved compacted fill prior to placement of additional fill. Benching should proceed in at least 3-foot vertical increments until the desired finished grades are achieved.

Prior to placement of additional compacted fill following an overnight or other grading delay, the exposed surface or previously compacted fill should be processed by scarification, moisture conditioning as needed to at or slightly above optimum moisture content, thoroughly blended and recompacted to a minimum of 90 percent of laboratory maximum dry density. Where unsuitable materials exist to depths of greater than one foot, the unsuitable materials should be over-excavated.

Following a period of flooding, rainfall or overwatering by other means, no additional fill should be placed until damage assessments have been made and remedial grading performed as described herein.

Rocks 12 inch in maximum dimension and smaller may be utilized in the compacted fill provided the fill is placed and thoroughly compacted over and around all rock. No oversize material should be used within 3 feet of finished pad grade and within 1 foot of other compacted fill areas. Rocks 12 inches up to four feet maximum dimension should be placed below the upper 10 feet of any fill and should not be closer than 15 feet to any slope face. These recommendations could vary as locations of improvements dictate. Where practical, oversized material should not be placed below areas where structures or deep utilities are proposed. Oversized material should be placed in windrows on a clean, overexcavated or unyielding compacted fill or firm natural ground surface. Select native or imported granular soil (S.E. 30 or higher) should be placed and thoroughly flooded over and around all windrowed rock, such that voids are filled. Windrows of oversized material should be staggered so those successive strata of oversized material are not in the same vertical plane.

It may be possible to dispose of individual larger rock as field conditions dictate and as recommended by the geotechnical consultant at the time of placement.

STANDARD SPECIFICATIONS OF GRADING Page 6 of 26 The contractor should assist the geotechnical consultant and/or his representative by digging test pits for removal determinations and/or for testing compacted fill. The contractor should provide this work at no additional cost to the owner or contractor's client.

Fill should be tested by the geotechnical consultant for compliance with the recommended relative compaction and moisture conditions. Field density testing should conform to ASTM Method of Test D 1556-00, D 2922-04. Tests should be conducted at a minimum of approximately two vertical feet or approximately 1,000 to 2,000 cubic yards of fill placed. Actual test intervals may vary as field conditions dictate. Fill found not to be in conformance with the grading recommendations should be removed or otherwise handled as recommended by the geotechnical consultant.

7.3 Fill Slopes

Unless otherwise recommended by the geotechnical consultant and approved by the regulating agencies, permanent fill slopes should not be steeper than 2:1 (horizontal: vertical).

Except as specifically recommended in these grading guidelines compacted fill slopes should be over-built two to five feet and cut back to grade, exposing the firm, compacted fill inner core. The actual amount of overbuilding may vary as field conditions dictate. If the desired results are not achieved, the existing slopes should be overexcavated and reconstructed under the guidelines of the geotechnical consultant. The degree of overbuilding shall be increased until the desired compacted slope surface condition is achieved. Care should be taken by the contractor to provide thorough mechanical compaction to the outer edge of the overbuilt slope surface.

At the discretion of the geotechnical consultant, slope face compaction may be attempted by conventional construction procedures including backrolling. The procedure must create a firmly compacted material throughout the entire depth of the slope face to the surface of the previously compacted firm fill intercore.

During grading operations, care should be taken to extend compactive effort to the outer edge of the slope. Each lift should extend horizontally to the desired finished slope surface or more as needed to ultimately established desired grades. Grade during construction should not be allowed to roll off at the edge of the slope. It may be helpful to elevate slightly the outer edge of the slope. Slough resulting from the placement of individual lifts should not be allowed to drift down over previous lifts. At intervals not exceeding four feet in vertical slope height or the capability of available equipment, whichever is less, fill slopes should be thoroughly dozer trackrolled.

For pad areas above fill slopes, positive drainage should be established away from the top-of-slope. This may be accomplished using a berm and pad gradient of at least two percent.

Section 8 - Trench Backfill

Utility and/or other excavation of trench backfill should, unless otherwise recommended, be compacted by mechanical means. Unless otherwise recommended, the degree of compaction should be a minimum of 90 percent of the laboratory maximum density.

Within slab areas, but outside the influence of foundations, trenches up to one foot wide and two feet deep may be backfilled with sand and consolidated by jetting, flooding or by mechanical means. If on-site materials are utilized, they should be wheel-rolled, tamped or otherwise compacted to a firm condition. For minor interior trenches, density testing may be deleted or spot testing may be elected if deemed necessary, based on review of backfill operations during construction.

If utility contractors indicate that it is undesirable to use compaction equipment in close proximity to a buried conduit, the contractor may elect the utilization of light weight mechanical compaction equipment and/or shading of the conduit with clean, granular material, which should be thoroughly jetted in-place above the conduit, prior to initiating mechanical compaction procedures. Other methods of utility trench compaction may also be appropriate, upon review of the geotechnical consultant at the time of construction.

In cases where clean granular materials are proposed for use in lieu of native materials or where flooding or jetting is proposed, the procedures should be considered subject to review by the geotechnical consultant. Clean granular backfill and/or bedding are not recommended in slope areas.

Section 9 - Drainage

Where deemed appropriate by the geotechnical consultant, canyon subdrain systems should be installed in accordance with CTE's recommendations during grading.

Typical subdrains for compacted fill buttresses, slope stabilization or sidehill masses, should be installed in accordance with the specifications.

STANDARD SPECIFICATIONS OF GRADING Page 8 of 26 Roof, pad and slope drainage should be directed away from slopes and areas of structures to suitable disposal areas via non-erodible devices (i.e., gutters, downspouts, and concrete swales).

For drainage in extensively landscaped areas near structures, (i.e., within four feet) a minimum of 5 percent gradient away from the structure should be maintained. Pad drainage of at least 2 percent should be maintained over the remainder of the site.

Drainage patterns established at the time of fine grading should be maintained throughout the life of the project. Property owners should be made aware that altering drainage patterns could be detrimental to slope stability and foundation performance.

Section 10 - Slope Maintenance

10.1 - Landscape Plants

To enhance surficial slope stability, slope planting should be accomplished at the completion of grading. Slope planting should consist of deep-rooting vegetation requiring little watering. Plants native to the southern California area and plants relative to native plants are generally desirable. Plants native to other semi-arid and arid areas may also be appropriate. A Landscape Architect should be the best party to consult regarding actual types of plants and planting configuration.

10.2 - Irrigation

Irrigation pipes should be anchored to slope faces, not placed in trenches excavated into slope faces.

Slope irrigation should be minimized. If automatic timing devices are utilized on irrigation systems, provisions should be made for interrupting normal irrigation during periods of rainfall.

<u>10.3 - Repair</u>

As a precautionary measure, plastic sheeting should be readily available, or kept on hand, to protect all slope areas from saturation by periods of heavy or prolonged rainfall. This measure is strongly recommended, beginning with the period prior to landscape planting.

If slope failures occur, the geotechnical consultant should be contacted for a field review of site conditions and development of recommendations for evaluation and repair.

If slope failures occur as a result of exposure to period of heavy rainfall, the failure areas and currently unaffected areas should be covered with plastic sheeting to protect against additional saturation.

> STANDARD SPECIFICATIONS OF GRADING Page 9 of 26

In the accompanying Standard Details, appropriate repair procedures are illustrated for superficial slope failures (i.e., occurring typically within the outer one foot to three feet of a slope face).

TYPICAL CANYON SUBDRAIN DETAIL STANDARD SPECIFICATIONS FOR GRADING

NOT TO SCALE

5-15

0-7

0-3

NO. 30

NO. 50

NO. 200

500' TO 1500'

> 1500'

6"

8"

Page 14 of 26

FRONT VIEW

SIDE VIEW

APPENDIX E

PERCOLATION TO INFILTRATION CALCULATIONS AND FIELD DATA

Project:		Jeffersor	n M. S.					
Project N	o.:	10-15771	lG			-	Tables P-1	
Percolation Field Data and Calculated Rates								
P-1					Total Depth:	63.5	inches	
Time	Test Interval Time	Test Refill	Water Level Initial/Start	Water Level End/Final	Incremental Water Level Change	Percolation Rate	Percolation Rate	
	(minutes)	Depth /Inches	Depth /Inches	Depth /Inches	(inches)	inches/minute	inches/hour	
9:08:00	Initial	None	55.75	initial	-	0.017	1 000	
9.38.00 10.08.00	20	NO	56.25	56.62	0.30	0.017	1.000	
10.08.00	20	55	56.63	57.12	0.58	0.013	1,000	
11.08.00	20	22	50.03	57.15	0.50	0.017	1.000	
11.00.00	20	NO			0.25	0.008	0.500	
11:38:00	30	NO	55.25		0.25	0.008	0.500	
12:08:00	30			55.88 EC 13	0.38	0.013	0.750	
12:38:00	30 20	55.25 NO		50.13	0.25	0.008	0.500	
13.08.00 P_2	50	NO	55.25	33.30	U.23	0.008	inches	
P-2					Total Depth.	43.5	linches	
Time	Test Interval Time	Test Refill	Water Level Initial/Start	Water Level End/Final	Incremental Water Level Change	Percolation Rate	Percolation Rate	
	(minutes)	Depth /Inches	Depth /Inches	Depth /Inches	(inches)	inches/minute	inches/hour	
9:10:00	Initial	None	35.50	initial	-			
9:40:00	30	NO	35.50	35.63	0.125	0.004	0.250	
10:10:00	30	NO	35.63	35.88	0.250	0.008	0.500	
10:40:00	30	NO	35.88	36.00	0.125	0.004	0.250	
11:10:00	30	NO	36.00	36.13	0.125	0.004	0.250	
11:40:00	30	NO	36.13	36.38	0.250	0.008	0.500	
12:10:00	30	35	36.38	36.50	0.125	0.004	0.250	
12:40:00	30	NO	35.00	35.13	0.125	0.004	0.250	
13:10:00	30	NO	35.13	35.25	0.125	0.004	0.250	
P-3					Total Depth:	58	inches	
Time	Test Interval Time	Test Refill	Water Level Initial/Start	Water Level End/Final	Incremental Water Level Change	Percolation Rate	Percolation Rate	
	(minutes)	Depth /Inches	Depth /Inches	Depth /Inches	(inches)	inches/minute	inches/hour	
9:28:00	Initial	None	48.50	initial	-			
9:58:00	30	NO	48.50	50.25	1.75	0.058	3.500	
10:28:00	30	48.875	50.25	51.63	1.38	0.046	2.750	
10:58:00	30	NO	48.88	49.75	0.88	0.029	1.750	
11:28:00	30	49.25	49.75	50.75	1.00	0.033	2.000	
11:58:00	30	NO	49.25	50.13	0.88	0.029	1.750	
12:28:00	30	50.125	50.13	50.88	0.75	0.025	1.500	
12:58:00	30	NO	50.13	50.88	0.75	0.025	1.500	
13:28:00	30	NO	50.88	51.63	0.75	0.025	1.500	

P-4					Total Depth:	54	inches
Time	Test Interval Time	Test Refill	Water Level Initial/Start	Water Level End/Final	Incremental Water Level Change	Percolation Rate	Percolation Rate
	(minutes)	Depth /Inches	Depth /Inches	Depth /Inches	(inches)	inches/minute	inches/hour
9:30:00	Initial	None	46.00	initial	-		
10:00:00	30	NO	46.00	46.06	0.06	0.002	0.125
10:30:00	30	NO	46.06	46.06	0.00	0.000	0.000
P-5					Total Depth:	28	inches
Time	Test Interval Time	Test Refill	Water Level Initial/Start	Water Level End/Final	Incremental Water Level Change	Percolation Rate	Percolation Rate
	(minutes)	Depth /Inches	Depth /Inches	Depth /Inches	(inches)	inches/minute	inches/hour
8:38:00	Initial	None	20.00	initial	-		
9:08:00	30	20	20.00	21.00	1.00	0.033	2.000
9:38:00	30	NO	20.00	20.63	0.63	0.021	1.250
10:08:00	30	20	20.63	21.00	0.38	0.013	0.750
10:38:00	30	NO	20.00	20.25	0.25	0.008	0.500
11:08:00	30	NO	20.25	20.50	0.25	0.008	0.500
11:38:00	30	NO	20.50	20.63	0.13	0.004	0.250
12:08:00	30	NO	20.63	20.88	0.25	0.008	0.500
12:38:00	30	NO	20.88	21.00	0.13	0.004	0.250
P-6					Total Depth:	28	inches
Time	Test Interval Time	Test Refill	Water Level Initial/Start	Water Level End/Final	Incremental Water Level Change	Percolation Rate	Percolation Rate
	(minutes)	Depth /Inches	Depth /Inches	Depth /Inches	(inches)	inches/minute	inches/hour
8:40:00	Initial	None	20.00	initial	-		
9:10:00	30	20	20.00	21.75	1.75	0.058	3.500
9:40:00	30	20	20.00	21.75	1.75	0.058	3.500
10:10:00	30	NO	20.00	20.38	0.38	0.013	0.750
10:40:00	30	20	20.38	21.13	0.75	0.025	1.500
11:10:00	30	NO	20.00	20.50	0.50	0.017	1.000
11:40:00	30	NO	20.50	20.88	0.38	0.013	0.750
12:10:00	30	NO	20.88	21.13	0.25	0.008	0.500
12:40:00	30	NO	21.13	21.50	0.38	0.013	0.750

P-7					Total Depth:	36	inches
Time	Test Interval Time	Test Refill	Water Level Initial/Start	Water Level End/Final	Incremental Water Level Change	Percolation Rate	Percolation Rate
	(minutes)	Depth /Inches	Depth /Inches	Depth /Inches	(inches)	inches/minute	inches/hour
8:52:00	Initial	None	28.00	initial	-		
9:22:00	30	NO	28.00	28.25	0.25	0.008	0.500
9:52:00	30	NO	28.25	28.50	0.25	0.008	0.500
10:22:00	30	NO	28.50	28.63	0.13	0.004	0.250
10:52:00	30	NO	28.63	28.75	0.13	0.004	0.250
11:22:00	30	NO	28.75	28.88	0.13	0.004	0.250
11:52:00	30	28	28.88	29.00	0.13	0.004	0.250
12:22:00	30	NO	28.00	28.13	0.13	0.004	0.250
12:52:00	30	NO	28.13	28.19	0.06	0.002	0.125
P-8					Total Depth:	29	inches
P-8 Time	Test Interval Time	Test Refill	Water Level Initial/Start	Water Level End/Final	Total Depth: Incremental Water Level Change	29 Percolation Rate	inches Percolation Rate
P-8 Time	Test Interval Time (minutes)	Test Refill	Water Level Initial/Start Depth /Inches	Water Level End/Final Depth /Inches	Total Depth: Incremental Water Level Change (inches)	29 Percolation Rate inches/minute	inches Percolation Rate inches/hour
P-8 Time 8:54:00	Test Interval Time (minutes) Initial	Test Refill Depth /Inches None	Water Level Initial/Start Depth /Inches 21.00	Water Level End/Final Depth /Inches initial	Total Depth: Incremental Water Level Change (inches)	29 Percolation Rate inches/minute	inches Percolation Rate inches/hour
P-8 Time 8:54:00 9:24:00	Test Interval Time (minutes) Initial 30	Test Refill Depth /Inches None NO	Water Level Initial/Start Depth /Inches 21.00 21.00	Water Level End/Final Depth /Inches initial 21.38	Total Depth: Incremental Water Level Change (inches) - 0.38	29 Percolation Rate inches/minute 0.013	inches Percolation Rate inches/hour
P-8 Time 8:54:00 9:24:00 9:54:00	Test Interval Time (minutes) Initial 30 30	Test Refill Depth /Inches None NO NO	Water Level Initial/Start Depth /Inches 21.00 21.00 21.38	Water Level End/Final Depth /Inches initial 21.38 21.63	Total Depth: Incremental Water Level Change (inches) - 0.38 0.25	29 Percolation Rate inches/minute 0.013 0.008	inches Percolation Rate inches/hour 0.750 0.500
P-8 Time 8:54:00 9:24:00 9:54:00 10:24:00	Test Interval Time (minutes) Initial 30 30 30	Test Refill Depth /Inches None NO NO NO	Water Level Initial/Start Depth /Inches 21.00 21.00 21.38 21.63	Water Level End/Final Depth /Inches initial 21.38 21.63 21.88	Total Depth: Incremental Water Level Change (inches) - 0.38 0.25 0.25	29 Percolation Rate inches/minute 0.013 0.008 0.008	inches Percolation Rate inches/hour 0.750 0.500 0.500
P-8 Time 8:54:00 9:24:00 9:54:00 10:24:00 10:54:00	Test Interval Time (minutes) Initial 30 30 30 30 30	Test Refill Depth /Inches None NO NO NO 21	Water Level Initial/Start Depth /Inches 21.00 21.00 21.38 21.63 21.88	Water Level End/Final Depth /Inches initial 21.38 21.63 21.88 22.00	Total Depth: Incremental Water Level Change (inches) - 0.38 0.25 0.25 0.25 0.13	29 Percolation Rate inches/minute 0.013 0.008 0.008 0.004	inches Percolation Rate inches/hour 0.750 0.500 0.500 0.250
P-8 Time 8:54:00 9:24:00 9:54:00 10:24:00 10:54:00 11:24:00	Test Interval Time (minutes) Initial 30 30 30 30 30 30 30	Test Refill Depth /Inches None NO NO NO 21 NO	Water Level Initial/Start Depth /Inches 21.00 21.38 21.63 21.88 21.00	Water Level End/Final Depth /Inches initial 21.38 21.63 21.88 22.00 21.13	Total Depth: Incremental Water Level Change (inches) - 0.38 0.25 0.25 0.13 0.13	29 Percolation Rate inches/minute 0.013 0.008 0.008 0.004 0.004	inches Percolation Rate inches/hour 0.750 0.500 0.500 0.250 0.250
P-8 Time 8:54:00 9:24:00 9:54:00 10:24:00 10:54:00 11:24:00 11:54:00	Test Interval Time (minutes) Initial 30 30 30 30 30 30 30 30 30	Test Refill Depth /Inches None NO NO NO 21 NO NO NO NO NO NO	Water Level Initial/Start Depth /Inches 21.00 21.38 21.63 21.88 21.00 21.13	Water Level End/Final Depth /Inches initial 21.38 21.63 21.88 22.00 21.13 21.25	Total Depth: Incremental Water Level Change (inches) - 0.38 0.25 0.25 0.25 0.13 0.13 0.13	29 Percolation Rate inches/minute 0.013 0.008 0.008 0.004 0.004 0.004	inches Percolation Rate inches/hour 0.750 0.500 0.500 0.250 0.250 0.250
P-8 Time 8:54:00 9:24:00 9:54:00 10:24:00 10:54:00 11:24:00 11:54:00 12:24:00	Test Interval Time (minutes) Initial 30 30 30 30 30 30 30 30 30 30 30	Test Refill Depth /Inches None NO NO NO 21 NO	Water Level Initial/Start Depth /Inches 21.00 21.38 21.63 21.88 21.00 21.13 21.25	Water Level End/Final Depth /Inches initial 21.38 21.63 21.88 22.00 21.13 21.25 21.38	Total Depth: Incremental Water Level Change (inches) - 0.38 0.25 0.25 0.13 0.13 0.13 0.13	29 Percolation Rate inches/minute 0.013 0.008 0.008 0.004 0.004 0.004 0.004	inches Percolation Rate inches/hour 0.750 0.500 0.500 0.250 0.250 0.250 0.250

Percolation Rate Conversion	P-1	Percolation Rate Conversion P-2			
	Inches			Inches	
Time Interval, $\Delta t =$	30	Time Interval,	Δt =	30	
Final Depth of Water, Df =	55.50	Final Depth of Water,	Df =	35.25	
Test Hole Radius, r =	3	Test Hole Radius,	r =	3	
Initial Depth to Water, Do =	55.25	Initial Depth to Water,	D0 =	35.13	
Total Depth of Test Hole, $D_T =$	63.5	Total Depth of Test Hole,	DT =	43.5	
		Ha = 9.275 in			
Hf = 0.23 III		Hf = 0.575 III			
		0.23			
$\Delta H = \Delta D = 0.25 \text{ III}$ Have = 8.125 in		$\Delta H = \Delta D = 0.125 \text{ In}$ Have = 8.3125 in			
lt = 0.078 in/hr		lt = 0.038 in/br			
		0.000 11/11			
Percolation Rate Conversion	P-3	Percolation Rate	Conversion	n P-4	
	Inches			Inches	
Time Interval, $\Delta t =$	30	Time Interval,	Δt =	30	
Final Depth of Water, Df =	51.63	Final Depth of Water,	Df =	46.06	
Test Hole Radius, r =	3	Test Hole Radius,	r =	3	
Initial Depth to Water, Do =	50.88	Initial Depth to Water,	Do =	46.06	
Total Depth of Test Hole, $D_T =$	58	Total Depth of Test Hole,	D⊤ =	54	
$H_0 = 7.125$ in		Ho= 7,9375 in			
$H_f = 6.375 \text{ in}$		Hf = 7.9375 in			
AH = AD = 0.75 in		AH = AD = 0 in			
$H_{avg} = 6.75 \text{ in}$		$H_{avg} = 7.9375 \text{ in}$			
lt = 0.273 in/hr		lt = 0.000 in/hr			
<u> </u>					
Percolation Rate Conversion	P-5	Percolation Rate	Conversio	n P-6	
Percolation Rate Conversion	P-5 Inches	Percolation Rate	Conversio	n P-6 Inches	
Percolation Rate Conversion Time Interval, Δt =	P-5 Inches 30	Percolation Rate	Conversion Δt =	n P-6 Inches 30	
Percolation Rate ConversionTime Interval, $\Delta t =$ Final Depth of Water,Df =	P-5 Inches 30 21.00	Percolation Rate Time Interval, Final Depth of Water,	Conversion Δt = Df =	n P-6 Inches 30 21.50	
Percolation Rate ConversionTime Interval, $\Delta t =$ Final Depth of Water, $Df =$ Test Hole Radius, $r =$	P-5 Inches 30 21.00 3	Percolation Rate Time Interval, Final Depth of Water, Test Hole Radius,	Conversion Δt = Df = r =	1 P-6 Inches 30 21.50 3	
Percolation Rate ConversionTime Interval, $\Delta t =$ Final Depth of Water,Df =Test Hole Radius, $r =$ Initial Depth to Water,Do =	P-5 Inches 30 21.00 3 20.88	Percolation Rate Time Interval, Final Depth of Water, Test Hole Radius, Initial Depth to Water,	<u>Δt =</u> Df = r = D0 =	1 P-6 Inches 30 21.50 3 21.13	
Percolation Rate ConversionTime Interval, $\Delta t =$ Final Depth of Water,Df =Test Hole Radius, $r =$ Initial Depth to Water,D0 =Total Depth of Test Hole,DT =	P-5 Inches 30 21.00 3 20.88 28	Percolation Rate Time Interval, Final Depth of Water, Test Hole Radius, Initial Depth to Water, Total Depth of Test Hole,	Conversion Δt = Df = r = D0 = DT =	n P-6 Inches 30 21.50 3 21.13 28	
Percolation Rate ConversionTime Interval, $\Delta t =$ Final Depth of Water,Df =Test Hole Radius,r =Initial Depth to Water,Do =Total Depth of Test Hole,DT =Ho =7.125 in	P-5 Inches 30 21.00 3 20.88 28	Percolation Rate Time Interval, Final Depth of Water, Test Hole Radius, Initial Depth to Water, Total Depth of Test Hole, Ho = 6.875 in	Conversion Δt = Df = r = D0 = DT =	n P-6 Inches 30 21.50 3 21.13 28	
Percolation Rate ConversionTime Interval, $\Delta t =$ Final Depth of Water,Df =Test Hole Radius,r =Initial Depth to Water,Do =Total Depth of Test Hole,DT =Ho =7.125 inHf =7 in	P-5 Inches 30 21.00 3 20.88 28	Percolation Rate Time Interval, Final Depth of Water, Test Hole Radius, Initial Depth to Water, Total Depth of Test Hole, Ho = 6.875 in Hf = 6.5 in	Conversion Δt = Df = r = D0 = DT =	n P-6 Inches 30 21.50 3 21.13 28	
Percolation Rate ConversionTime Interval, $\Delta t =$ Final Depth of Water, $Df =$ Test Hole Radius, $r =$ Initial Depth to Water, $Do =$ Total Depth of Test Hole, $DT =$ $H_0 =$ 7.125 in $Hf =$ 7 in $\Delta H = \Delta D =$ 0.125 in	P-5 Inches 30 21.00 3 20.88 28	Percolation RateTime Interval, Final Depth of Water, Test Hole Radius, Initial Depth to Water, Total Depth of Test Hole, $H_0 =$ 6.875 in Hf = $H_f =$ 6.5 in 0.375 in	Δt = Df = r = D0 = DT =	n P-6 Inches 30 21.50 3 21.13 28	
Percolation Rate ConversionTime Interval, $\Delta t =$ Final Depth of Water, $Df =$ Test Hole Radius, $r =$ Initial Depth to Water, $Do =$ Total Depth of Test Hole, $DT =$ Ho =7.125 inHf =7 in $\Delta H = \Delta D =$ 0.125 inHavg =7.0625 in	P-5 Inches 30 21.00 3 20.88 28	Percolation RateTime Interval, Final Depth of Water, Test Hole Radius, Initial Depth to Water, Total Depth of Test Hole,Ho = 6.875 in Hf =Hf = 6.5 in $\Delta H = \Delta D =$ 0.375 in Havg = 6.6875 in	Conversion Δt = Df = r = D0 = DT =	n P-6 Inches 30 21.50 3 21.13 28	
Percolation Rate ConversionTime Interval, $\Delta t =$ Final Depth of Water, $Df =$ Test Hole Radius, $r =$ Initial Depth to Water, $D0 =$ Total Depth of Test Hole, $DT =$ Ho =7.125 inHf =7 in $\Delta H = \Delta D =$ 0.125 inHavg =7.0625 inIt =0.044 in/hr	P-5 Inches 30 21.00 3 20.88 28	Percolation RateTime Interval, Final Depth of Water, Test Hole Radius, Initial Depth to Water, Total Depth of Test Hole,Ho = 6.875 in Hf =Hf = 6.5 in $\Delta H = \Delta D =$ $\Delta H = \Delta D =$ 0.375 in Havg =It = 0.137 in/hr	Δt = Df = r = D0 = DT =	n P-6 Inches 30 21.50 3 21.13 28	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	P-5 Inches 30 21.00 3 20.88 28	Percolation RateTime Interval, Final Depth of Water, Test Hole Radius, Initial Depth to Water, Total Depth of Test Hole,Ho =6.875 in Hf =Hf =6.5 in 0.375 in Havg =Havg =6.6875 in in lt =It =0.137 in/hr	Conversion Δt = Df = r = D0 = DT =	n P-6 Inches 30 21.50 3 21.13 28	
Percolation Rate ConversionTime Interval, $\Delta t =$ Final Depth of Water, $Di =$ Test Hole Radius, $r =$ Initial Depth to Water, $Do =$ Total Depth of Test Hole, $DT =$ Ho =7.125 inHf =7 in $\Delta H = \Delta D =$ 0.125 inHavg =7.0625 inIt =0.044 in/hr	P-5 Inches 30 21.00 3 20.88 28	Percolation RateTime Interval, Final Depth of Water, Test Hole Radius, Initial Depth to Water, Total Depth of Test Hole, Ho = 6.875 in Hf = 6.5 in $\Delta H = \Delta D = 0.375$ in Havg = 6.6875 in It = 0.137 in/hr	Δt = Df = r = D0 = DT =	n P-6 Inches 30 21.50 3 21.13 28	
Percolation Rate ConversionTime Interval, $\Delta t =$ Final Depth of Water,Df =Test Hole Radius,r =Initial Depth to Water,D0 =Total Depth of Test Hole,DT =Ho =7.125 inHf =7 in $\Delta H = \Delta D =$ 0.125 inHavg =7.0625 inIt =0.044 in/hr	P-5 Inches 30 21.00 3 20.88 28 P-7	Percolation RateTime Interval, Final Depth of Water, Test Hole Radius, Initial Depth to Water, Total Depth of Test Hole,Ho = 6.875 in Hf =Hf = 6.5 in $\Delta H = \Delta D =$ 0.375 in Havg = 6.6875 in It =It = 0.137 in/hr	Conversion Δt = Df = r = D0 = DT = Conversion	n P-6 Inches 30 21.50 3 21.13 28	
Percolation Rate ConversionTime Interval, $\Delta t =$ Final Depth of Water,Df =Test Hole Radius,r =Initial Depth to Water,Do =Total Depth of Test Hole,DT =Ho =7.125 inHf =7 in $\Delta H = \Delta D =$ 0.125 inHavg =7.0625 inIt =0.044 in/hr	P-5 Inches 30 21.00 3 20.88 28 P-7 Inches	Percolation RateTime Interval, Final Depth of Water, Test Hole Radius, Initial Depth to Water, Total Depth of Test Hole,Ho = 6.875 in Hf =Hf = 6.5 in $\Delta H = \Delta D =$ $\Delta H = \Delta D =$ 0.375 in Havg =Hz = 0.137 in/hrPercolation Rate	Conversion Δt = Df = r = DT = Conversion	n P-6 Inches 30 21.50 3 21.13 28	
Percolation Rate ConversionTime Interval, $\Delta t =$ Final Depth of Water, $Df =$ Test Hole Radius, $r =$ Initial Depth to Water, $Do =$ Total Depth of Test Hole, $DT =$ Ho =7.125 inHf =7 in $\Delta H = \Delta D =$ 0.125 inHavg =7.0625 inIt =0.044 in/hrPercolation Rate ConversionTime Interval, $\Delta t =$	P-5 Inches 30 21.00 3 20.88 28 28 P-7 Inches 30	Percolation RateTime Interval, Final Depth of Water, Test Hole Radius, Initial Depth to Water, Total Depth of Test Hole,Ho = 6.875 in Hf =Hf = 6.5 in $\Delta H = \Delta D =$ 0.375 in Havg = 6.6875 in $1t =$ It = 0.137 in/hrPercolation RateTime Interval, Einel Depth of State	Conversion $\Delta t =$ Df = r = DT = DT = Conversion $\Delta t =$ D:	1 P-6 Inches 30 21.50 3 21.13 28 1 P-8 Inches 30 21.52	
Percolation Rate ConversionTime Interval, $\Delta t =$ Final Depth of Water, $Df =$ Test Hole Radius, $r =$ Initial Depth to Water, $Do =$ Total Depth of Test Hole, $DT =$ Ho =7.125 inHf =7 in $\Delta H = \Delta D =$ 0.125 inHavg =7.0625 inIt =0.044 in/hrPercolation Rate ConversionTime Interval, $\Delta t =$ Final Depth of Water, $Df =$ Test Hole Radius	P-5 Inches 30 21.00 3 20.88 28 28 28 P-7 Inches 30 28.19	Percolation RateTime Interval, Final Depth of Water, Test Hole Radius, Initial Depth to Water, Total Depth of Test Hole,Ho =6.875 in Hf =Hf =6.5 in 0.375 in Havg =AH = ΔD =0.375 in 1t =It =0.137 in/hrPercolation RateTime Interval, Final Depth of Water, Tast Hole, Depth of Water,	Conversion $\Delta t = Df = r = D0 = DT = DT = DT = DT = DT = DT = DT$	n P-6 Inches 30 21.50 3 21.13 28 1 P-8 Inches 30 21.50	
Percolation Rate ConversionTime Interval, $\Delta t =$ Final Depth of Water, $Df =$ Test Hole Radius, $r =$ Initial Depth to Water, $Do =$ Total Depth of Test Hole, $DT =$ Ho =7.125 inHf =7 in $\Delta H = \Delta D =$ 0.125 inHavg =7.0625 inIt =0.044 in/hrPercolation Rate ConversionTime Interval, $\Delta t =$ Final Depth of Water, $Df =$ Test Hole Radius, $r =$	P-5 Inches 30 21.00 3 20.88 28 28 P-7 Inches 30 28.19 3 30 28.19	Percolation Rate Time Interval, Final Depth of Water, Test Hole Radius, Initial Depth to Water, Total Depth of Test Hole, Ho = 6.875 in Hf = 6.5 in ΔH = ΔD = 0.375 in Havg = 6.6875 in It = 0.137 in/hr Percolation Rate Time Interval, Final Depth of Water, Test Hole Radius, Initial Depth of Water,	Conversion Δt = Df = r = D0 = DT = DT = Conversion Δt = Df = r = Df = r =	n P-6 Inches 30 21.50 3 21.13 28 10.13 28 10.13 28 10.13 20 21.50 30 21.50 30 21.50 30 21.50	
Percolation Rate ConversionTime Interval, $\Delta t =$ Final Depth of Water, $Df =$ Test Hole Radius, $r =$ Initial Depth to Water, $Do =$ Total Depth of Test Hole, $DT =$ Ho =7.125 inHf =7 in $\Delta H = \Delta D =$ 0.125 inHavg =7.0625 inIt =0.044 in/hrPercolation Rate ConversionTime Interval, $\Delta t =$ Final Depth of Water, $Df =$ Test Hole Radius, $r =$ Initial Depth to Water, $Do =$ Test Housth of Test Hole $Do =$	P-5 Inches 30 21.00 3 20.88 28 28 28 P-7 Inches 30 28.19 3 28.13	Percolation Rate Time Interval, Final Depth of Water, Test Hole Radius, Initial Depth to Water, Total Depth of Test Hole, Ho = 6.875 in Hf = 6.5 in ΔH = ΔD = 0.375 in Havg = 6.6875 in It = 0.137 in/hr Percolation Rate Time Interval, Final Depth of Water, Test Hole Radius, Initial Depth to Water, Test Hole Radius, Initial Depth to Water,	Δt = Df = r = D0 = DT = Conversion Δt = Df = r = Do =	n P-6 Inches 30 21.50 3 21.13 28 Netes Inches 30 21.50 3 21.38	
Percolation Rate ConversionTime Interval, $\Delta t =$ Final Depth of Water, $Df =$ Test Hole Radius, $r =$ Initial Depth to Water, $Do =$ Total Depth of Test Hole, $DT =$ Ho =7.125 inHf =7 in $\Delta H = \Delta D =$ 0.125 inHavg =7.0625 inIt =0.044 in/hrTime Interval, $\Delta t =$ Final Depth of Water, $Df =$ Test Hole Radius, $r =$ Initial Depth to Water, $Do =$ Total Depth of Test Hole, $DT =$	P-5 Inches 30 21.00 3 20.88 28 28 28 28 28 28 30 28.19 3 28.13 36	Percolation RateTime Interval, Final Depth of Water, Test Hole Radius, Initial Depth to Water, Total Depth of Test Hole,Ho =6.875 in Hf = $\Delta H = \Delta D =$ 0.375 in 0.137 in/hrIt =0.137 in/hrPercolation RateTime Interval, Final Depth of Water, Test Hole Radius, Initial Depth to Water, Total Depth of Test Hole,	Δt = Df = r = D0 = DT = Conversion Δt = Df = r = D0 = DT =	n P-6 Inches 30 21.50 3 21.13 28 Notes Inches 30 21.50 3 21.38 29	
Percolation Rate ConversionTime Interval, $\Delta t =$ Final Depth of Water, $Df =$ Test Hole Radius, $r =$ Initial Depth to Water, $Do =$ Total Depth of Test Hole, $DT =$ Ho =7.125 inHf =7 in $\Delta H = \Delta D =$ 0.125 inHavg =7.0625 inIt =0.044 in/hrTime Interval, $\Delta t =$ Final Depth of Water, $Df =$ Test Hole Radius, $r =$ Initial Depth to Water, $Do =$ Total Depth of Test Hole, $DT =$ Ho =7.875 in	P-5 Inches 30 21.00 3 20.88 28 28 28 P-7 Inches 30 28.19 3 28.13 36	Percolation RateTime Interval, Final Depth of Water, Test Hole Radius, Initial Depth to Water, Total Depth of Test Hole,Ho = 6.875 in $\Delta H = \Delta D =$ Hf = 6.6875 in $\Delta H = 0.375$ in Havg =It = 0.137 in/hrPercolation RateTime Interval, Final Depth of Water, Test Hole Radius, Initial Depth to Water, Total Depth of Test Hole, Ho =Ho =7 625 in	Δt = Df = r = D0 = DT = Conversion Δt = Df = r = Df = r = Df = r = Df = r = D0 = DT =	n P-6 Inches 30 21.50 3 21.13 28 1 P-8 Inches 1 nches 30 21.50 3 21.38 29	
Percolation Rate ConversionTime Interval, $\Delta t =$ Final Depth of Water, $Df =$ Test Hole Radius, $r =$ Initial Depth to Water, $Do =$ Total Depth of Test Hole, $DT =$ Ho =7.125 inHf =7 in $\Delta H = \Delta D =$ 0.125 inHavg =7.0625 inIt =0.044 in/hrPercolation Rate ConversionTime Interval, $\Delta t =$ Final Depth of Water, $Df =$ Test Hole Radius, $r =$ Initial Depth to Water, $Do =$ Total Depth of Test Hole, $DT =$ Ho =7.875 inHr =7.8125 in	P-5 Inches 30 21.00 3 20.88 28 28 28 P-7 Inches 30 28.19 3 28.13 36	Percolation RateTime Interval, Final Depth of Water, Test Hole Radius, Initial Depth to Water, Total Depth of Test Hole,Ho = 6.875 in Hf =AH = ΔD = 0.375 in Havg =Havg = 6.6875 in It =It = 0.137 in/hrPercolation RateTime Interval, Final Depth of Water, Test Hole Radius, Initial Depth to Water, Total Depth of Test Hole, Ho =Ho = 7.625 in Hf =Hf = 7.5 in	Conversion $\Delta t = Df = T = D0 = DT = DT = DT$ Conversion $\Delta t = Df = T = Df = T = DT = DT = DT = DT =$	n P-6 Inches 30 21.50 3 21.13 28 n P-8 Inches 100 21.50 3 21.38 29	
Percolation Rate ConversionTime Interval, $\Delta t =$ Final Depth of Water, $Df =$ Test Hole Radius, $r =$ Initial Depth to Water, $Do =$ Total Depth of Test Hole, $DT =$ Ho =7.125 inHf =7 in $\Delta H = \Delta D =$ 0.125 inHavg =7.0625 inIt =0.044 in/hrTime Interval, $\Delta t =$ Final Depth of Water,Df =Test Hole Radius,Test Hole Radius, $r =$ Initial Depth to Water, $Do =$ Total Depth of Test Hole, $DT =$ Ho =7.875 inHf =7.8125 in $\Delta H = \Delta D =$ 0.0625 in	P-5 Inches 30 21.00 3 20.88 28 28 28 28 10 28.19 3 28.13 36	Percolation RateTime Interval, Final Depth of Water, Test Hole Radius, Initial Depth to Water, Total Depth of Test Hole,Ho =6.875 in Hf =Hf =6.5 in 0.375 in Havg =Havg =6.6875 in 1t =It =0.137 in/hrPercolation RateTime Interval, Final Depth of Water, Test Hole Radius, Initial Depth to Water, Total Depth of Test Hole, Ho =Ho =7.625 in Hf =Hf =7.5 in 0.125 in	Δt = Df = r = D0 = DT = Conversion Δt = Df = r = D0 = DT =	n P-6 Inches 30 21.50 3 21.13 28 Nches Inches 30 21.50 3 21.38 29	
Percolation Rate Conversion Time Interval, $\Delta t =$ Final Depth of Water, Df = Test Hole Radius, r = Initial Depth to Water, Do = Total Depth of Test Hole, DT = Ho = 7.125 in Hf = 7 in $\Delta H = \Delta D =$ 0.125 in Havg = 7.0625 in It = 0.044 in/hr Percolation Rate Conversion Time Interval, $\Delta t =$ Final Depth of Water, Df = Test Hole Radius, r = Initial Depth of Water, Do = Total Depth of Test Hole, DT = Ho = 7.875 in Hf = 7.8125 in $\Delta H = \Delta D =$ 0.0625 in Havg = 7.84375 in	P-5 Inches 30 21.00 3 20.88 28 28 28 28 28 30 28.19 3 28.13 36	Percolation RateTime Interval, Final Depth of Water, Test Hole Radius, Initial Depth to Water, Total Depth of Test Hole,Ho =6.875 in Hf =Hf =6.5 in 0.375 in Havg =Havg =6.6875 in 0.137 in/hrPercolation RateTime Interval, Final Depth of Water, Test Hole Radius, Initial Depth to Water, Total Depth of Test Hole,Ho =7.625 in 1.25 in Hf =Hf =7.525 in 0.125 in Havg =	Conversion $\Delta t = Df = r = D0 = DT = DT = DT = DT = DT = DT = DT$	n P-6 Inches 30 21.50 3 21.13 28 n P-8 Inches 30 21.50 3 21.38 29	
Percolation Rate ConversionTime Interval, $\Delta t =$ Final Depth of Water, $Df =$ Test Hole Radius, $r =$ Initial Depth to Water, $Do =$ Total Depth of Test Hole, $DT =$ Ho =7.125 inHf =7 in $\Delta H = \Delta D =$ 0.125 inHavg =7.0625 inIt =0.044 in/hrPercolation Rate ConversionTime Interval, $\Delta t =$ Final Depth of Water, $Df =$ Test Hole Radius, $r =$ Initial Depth to Water, $Do =$ Total Depth of Test Hole, $DT =$ Ho =7.875 inHf =7.8125 in $\Delta H = \Delta D =$ 0.0625 inHavg =7.84375 inIt =0.020 in/hr	P-5 Inches 30 21.00 3 20.88 28 28 28 28 28 30 28.19 3 28.13 36	Percolation RateTime Interval, Final Depth of Water, Test Hole Radius, Initial Depth to Water, Total Depth of Test Hole,Ho =6.875 in Hf = $\Delta H = \Delta D =$ 0.375 in Havg =Havg =6.6875 in 0.137 in/hrPercolation RateTime Interval, Final Depth of Water, Test Hole Radius, Initial Depth to Water, Total Depth of Test Hole, Ho =Ho =7.625 in 0.125 in Havg =Hf =7.5625 in 1.125 in Havg =Havg =7.5625 in 0.041 in/hr	Conversion $\Delta t = Df = r = D0 = DT = DT = DT = DT = DT = DT = DT$	n P-6 Inches 30 21.50 3 21.13 28 Nnches Inches 30 21.50 3 21.38 29	

TABLE							
RESULTS OF PERCOLATION TESTING WITH FACTOR OF SAFETY APPLIED							
Test Location	Test Depth		Soil Type*	Percolation Rate (inches per hour)	Infiltration Rate (inches per hour)	Infiltration Rate with FOS of 2 Applied (inches per hour)	
	(inches)	Case	(USCS Classification)		1 /		
P-1	63.5	III	Tso	0.500	0.078	0.039	
P-2	43.5	III	Qppf	0.250	0.038	0.019	
P-3	58	III	Qppf	1.500	0.273	0.136	
P-4	54	Ι	Tso	0.000	0.000	0.000	
P-5	28	III	Tso	0.250	0.044	0.022	
P-6	28	III	Tso	0.750	0.137	0.069	
P-7	36	III	Tso	0.125	0.020	0.010	
P-8	29	III	Tso	0.250	0.041	0.021	

APPENDIX F

I-8 WORKSHEET

Worksheet I-8 : Categorization of Infiltration Feasibility Condition

Categor	ization of Infiltration Feasibility Condition	Worksheet I-8					
Part 1 - Full Infiltration Feasibility Screening Criteria Would infiltration of the full design volume be feasible from a physical perspective without any undesirable consequences that cannot be reasonably mitigated?							
Criteria	Screening Question		Yes	No			
1	Is the estimated reliable infiltration rate below proposed facil greater than 0.5 inches per hour? The response to this Screer be based on a comprehensive evaluation of the factors prese C.2 and Appendix D.	lity locations ning Question shall nted in Appendix		х			
Provide l	Provide basis: The NRCS soils across the site are all Type D soils with very high surface runoff. The infiltration rates were generally consistent the NRCS mapped soil types based on percolation testing. Three soil types were present in the area of the proposed development, Quaternary Previously Placed Fill, Old Paralic Deposits, and San Onofre Breccia.						
	Eight percolation tests were completed with two performed in the Previously Placed Fill and eight within the San Onofre Breccia. The calculated infiltration rates (with an applied factor of safety of 2) ranged from approximately to 0.0 to 0.136 inch per hour.						
Summari narrative	ze findings of studies; provide reference to studies, calculation discussion of study/data source applicability.	s, maps, data source	s, etc. Pro	ovide			
2	Can infiltration greater than 0.5 inches per hour be allowed w risk of geotechnical hazards (slope stability, groundwater mo other factors) that cannot be mitigated to an acceptable level this Screening Question shall be based on a comprehensive of factors presented in Appendix C.2.	vithout increasing unding, utilities, or ? The response to evaluation of the	Х				
Provide basis: Provided the basins are constructed in the areas with adequate set back from proposed structural improvements, slopes, and property limits, risk of geotechnical hazards will not be significantly increased.							
Summari narrative	ze findings of studies; provide reference to studies, calculation discussion of study/data source applicability.	s, maps, data source	s, etc. Pro	ovide			

	Worksheet I-8 Page 2 of 4						
Criteria	Screening Question	Yes	No				
3	Can infiltration greater than 0.5 inches per hour be allowed without increasing risk of groundwater contamination (shallow water table, storm water pollutants or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.	Х					
Provide l	basis: According to Geotracker, the nearest known "Open" LUST cleanup site is over tw away from the site.	ro kilome	ters				
Summari narrative	ze findings of studies; provide reference to studies, calculations, maps, data sources discussion of study/data source applicability.	s, etc. Pro	ovide				
4	Can infiltration greater than 0.5 inches per hour be allowed without causing potential water balance issues such as change of seasonality of ephemeral streams or increased discharge of contaminated groundwater to surface waters? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.	Х					
Provide basis: The nearest down gradient surface waters consist of the San Luis Rey River which is over 2,300 feet from the proposed improvement area. Due to the distance and topography to the pond it is unlikely to be impacted by infiltrating site water.							
Summari narrative	Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability.						
Part 1	If all answers to rows 1 - 4 are "Yes" a full infiltration design is potentially feasibl feasibility screening category is Full Infiltration	e. The	No Full				
Result*	If any answer from row 1-4 is "No", infiltration may be possible to some extent h would not generally be feasible or desirable to achieve a "full infiltration" design. Proceed to Part 2	out	INO FUII				

*To be completed using gathered site information and best professional judgment considering the definition of MEP in the MS4 Permit. Additional testing and/or studies may be required by City Engineer to substantiate findings.

	Worksheet I-8 Page 3 of 4					
Part 2 – Partial Infiltration vs. No Infiltration Feasibility Screening Criteria Would infiltration of water in any appreciable amount be physically feasible without any negative consequences that cannot be reasonably mitigated?						
Criteria	Screening Question	Yes	No			
5	Do soil and geologic conditions allow for infiltration in any appreciable rate or volume? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2 and Appendix D.	Х				
Provide l Summari narrative infiltratio	Appendix D. Provide basis: Based on infiltration rates, portions of the site are considered adequate to support partial infiltration. Stormwater BMP's should be designed based on area specific infiltration rates. Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability and why it was not feasible to mitigate low					
6	Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2.	Х				
factors presented in Appendix C.2. Provide basis: Provide basis: <						
infiltratio	n rates.					

1	Worksheet I-8 Page 4 of 4					
Criteria	Screening Question	Yes	No			
7	Can Infiltration in any appreciable quantity be allowed without posing significant risk for groundwater related concerns (shallow water table, storm water pollutants or other factors)? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.	Х				
Provide I Summari	Provide basis: According to Geotracker, the nearest known "Open" LUST cleanup site is over two kilometers away from the site.					
narrative infiltratio	discussion of study/data source applicability and why it was not feasible to mitigat n rates.	e low				
8	Can infiltration be allowed without violating downstream water rights? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.	Х				
Provide basis: The nearest down gradient surface waters consist of the San Luis Rey River which is over 2,300 feet from the proposed improvement area. Due to the distance and topography to the pond it is unlikely to be impacted by infiltrating site water.						
Summari narrative infiltratio	ze findings of studies; provide reference to studies, calculations, maps, data sources discussion of study/data source applicability and why it was not feasible to mitigat n rates.	s, etc. Pro e low	ovide			
Part 2 Result*	If all answers from row 1-4 are yes then partial infiltration design is potentially fea The feasibility screening category is Partial Infiltration. If any answer from row 5-8 is no, then infiltration of any volume is considered to infeasible within the drainage area. The feasibility screening category is No Infiltration.	asible.) be ation.	Partial			

*To be completed using gathered site information and best professional judgment considering the definition of MEP in the MS4 Permit. Additional testing and/or studies may be required by City Engineer to substantiate findings

APPENDIX G

SLOPE STABILITY ANALYSIS

DISTANCE (FEET) CROSS SECTION A-A'

DISTANCE (FEET) CROSS SECTION A-A'

CROSS SECTION D-D'